

NF-Heart: A Near-field Non-contact Continuous User Authentication System via Ballistocardiogram

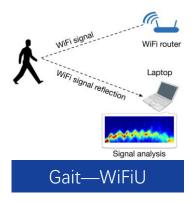
Yandao Huang¹², Minghui Qiu², Lin Chen², Zhencan Peng³, Qian Zhang¹, and Kaishun Wu²

Hong Kong University of Science and Technology
Hong Kong University of Science and Technology (Guangzhou)
Shenzhen University

www.yandaohuang.cn

Ubicomp 2023 October 8th-12th

001	101001101001	0011600001	01100
75.00 11.01	Username	username	0111
000	Password	******	100
2001		Bemember Me	101
0000			0100


54% Organizations450% growth in 20201 Bil. Records of Attack\$5 Trillion business lost

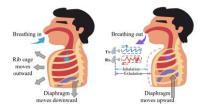

One-pass Authentication Vs. Continuous Authentication

HKUST

Existing Continuous Authentication (CA) Methods

1. Behavioral based

Eye movement


2. Physiological based

PPG—TrueHeart

Lab VIEW Interface Data Acquisition Device Tront Radar

Breath—M-Auth

80% of working hour sitting

continuous authentication (CA) system based on near-field non-contact ballistocardiogram (BCG) measurements

NF-Heart: a secure and unobtrusive

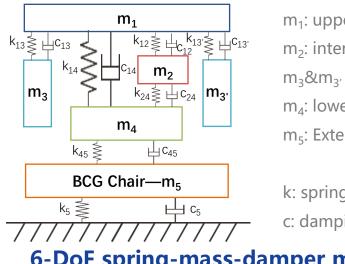
Can we turn a common chair into an automatic identity "scanner"?

In-home adaptation for IoT device Remote Factory Security & Management

电 Our work

NF-Heart:

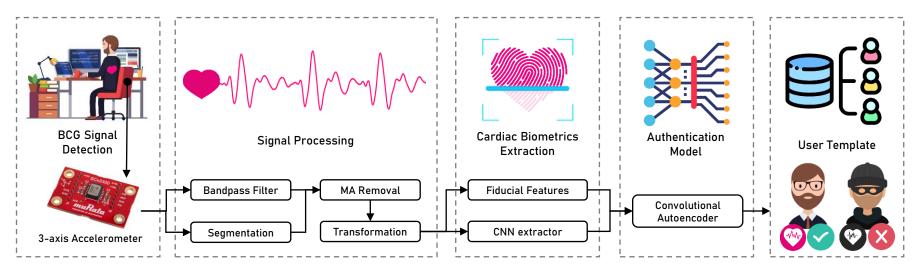
Continuous authentication (CA) Near-field & Non-contact Ballistocardiogram (BCG)



In-home adaptation for IoT device Remote Factory Security & Management HKUST

Principle of NF-Heart

m₁: upper torso m₂: internal organs $m_3 \& m_{3'}$: upper limbs m₄: lower limbs m₅: External chair


k: spring coeff. c: damping coeff.

6-DoF spring-mass-damper model

Key Insights:

- 1. BCG measures body's **gravity changes** caused by the **recoil force** of the body in reaction to the ejection of blood.
- 2. BCG transmission from internal blood vessels to the external **body** (**m**, **c**, **k**) can be estimated as an **encryption process** due to non-linear effects.

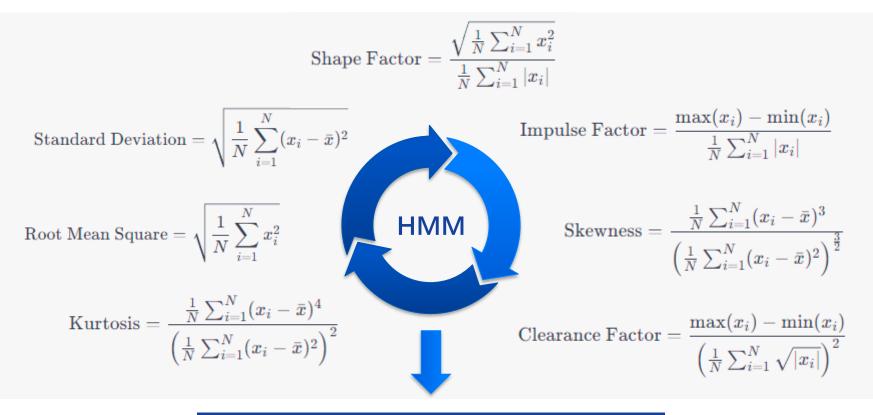
System Workflow

CHALLENGES

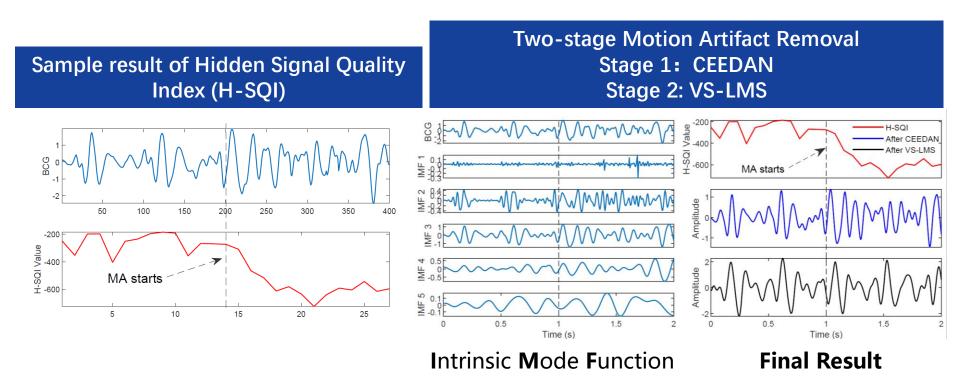
BCG is sensitive to motion artifacts (MAs)

The unavoidable **effects of respiration**, **sitting posture**, **and user emotion** on BCG signals

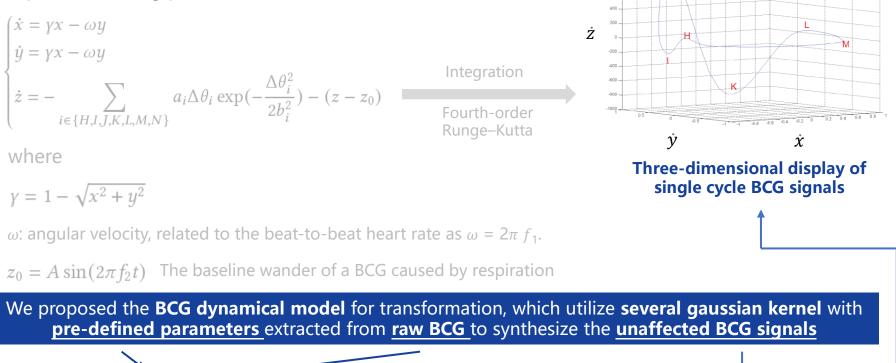
SOLUTIONS



Hidden Signal Quality Index (H-SQI) for MA Detection. A **Two-stage MA-removal** using **CEEMDAN** and **VS-LMS** for MA Removal.


We proposed a **BCG dynamic model** with 14 Gaussian Kernels to **transform** the BCG signals

Methodology——Motion Artifact Detection


Hidden Signal Quality Index (H-SQI)

Methodology——Motion Artifact Removal

Methodology——Transformation

Challenge 2: BCG dynamical model for eliminating effects of respiration, sitting posture, and user emotion.

$$\theta_{i,a_{i},b_{i}} = \min_{\theta_{i,a_{i},b_{i}}} ||x(t) - z(t)||_{2}^{2}$$

10

HKUST

Methodology——Features extraction

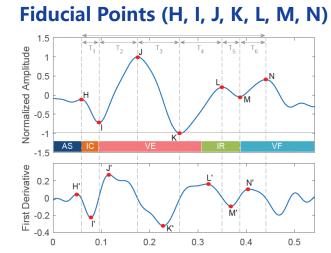
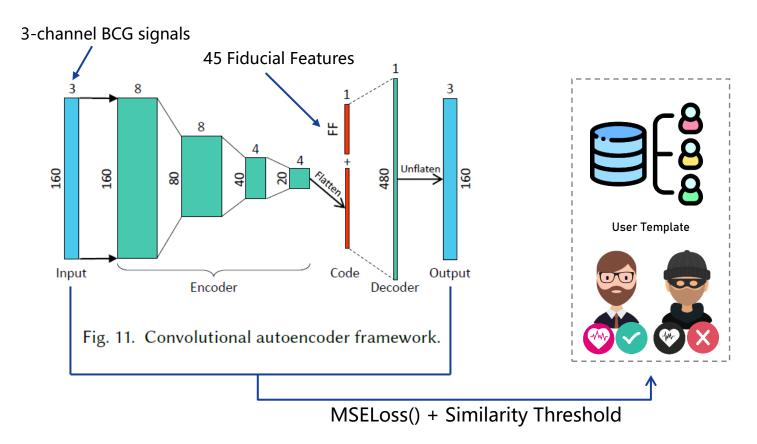



Table 1. The definition of fiducial features based on fiducial-point delineation.

Feature Type	Feature Name	Description
Time Interval	DU=T(H, N), T(H, I), T(I, J), T(J, K), T(K, L), T(L, M), T(M, N) T(H', I'), T(I', J'), T(J', K'), T(K', L'), T(L', M'), T(M', N')	Time interval between each two consecutive fiducial points
Time Ratio	T(H,I)/DU,T(I,J)/DU,T(J,K)/DU,T(K,L)/DU,T(L,M)/DU,T(M,N)/DU	Ratios of section to whole cycle
Extremum	A(H), A(I), A(J), A(K), A(L), A(M), A(N) A(H'), A(I'), A(J'), A(K'), A(L'), A(M'), A(N')	Peak values of fiducial points
Displacement	A(H)-A(I) , A(I)-A(J) , A(J)-A(K) , A(K)-A(L) , A(L)-A(M) , A(M)-A(N)	Differences between Y-axis of points
Area Under Curve	AUC(H, I), AUC(I, J), AUC(J, K), AUC(K, L), AUC(L, M), AUC(M,N)	Area enclosed by $S_{bcg}(a, b)$ and $Y = min(S_{bcg})$

11

Methodology——User Authentication Model

Evaluation——Setup

105 healthy subjects (32 females, age 18-57)

Procedure

105 subjects are asked to sit still and recline against the chair's back for 5 minutes.
10 of them evaluate the system's robustness (motion artifacts, sitting posture, heart rate, emotion, etc.)

Evaluation

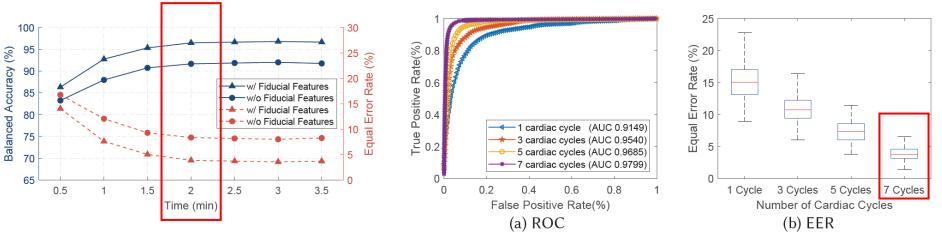
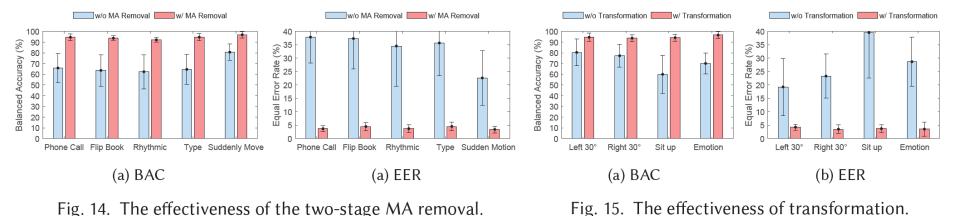



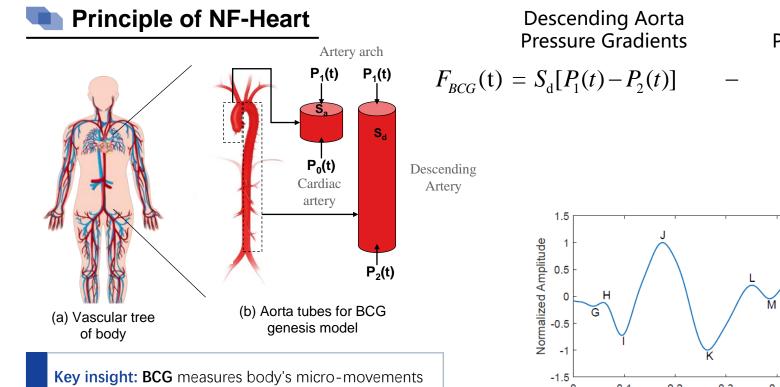
Fig. 12. Impact of the HCT for model initialization. Fig. 13. ROC curves and EER with different number of cardiac cycles.

When heartprint collection time (HCT) = 2 minutes, and number of input cardiac cycles = 7 NF-Heart can verify users with a balanced accuracy (BAC) of 96.5% and an equal error rate (EER) of 3.8%

Evaluation

MA removal algorithm increases the BAC by 27% and reduces the EER by 30% on average

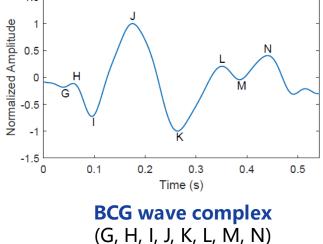
- Transformation scheme increases the BAC by 23% and reduces the EER by 24% on average
- The signal-processing pipeline makes NF-Heart resilient to various practical situations


- We propose a near-field continuous user authentication system using unique BCG biometrics. Our system can guarantee the remote access security of organizations by continuously verifying the identity of work-at-home staff.
- Compared to SOTA ECG or PPG-based CA scheme, NF-Heart does not require wearables or direct contact with sensor nodes.
- We design multiple stages of signal processing to recover distorted BCG signals for practical authentication in actual situations. 45 user-invariant fiducial features are successfully extracted from BCG signals using refined U-net architecture, and the authentication is achieved with lightweight CAE framework.
- We design a smart chair for non-contact BCG measurements. We conduct extensive experiments involving 105 subjects to validate the security, availability, and robustness of NF-Heart.

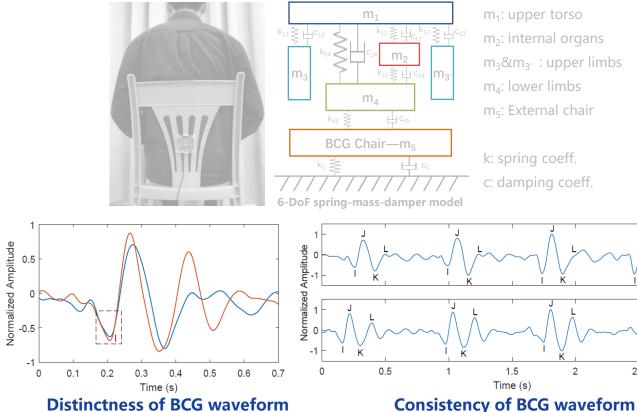
HKUST

Thank You

Yandao Huang www.yandaohuang.cn


produced by the **recoil force** of the body in reaction to

the cardiac ejection of blood, and we can infer cardiac


biometrics from BCG signals.

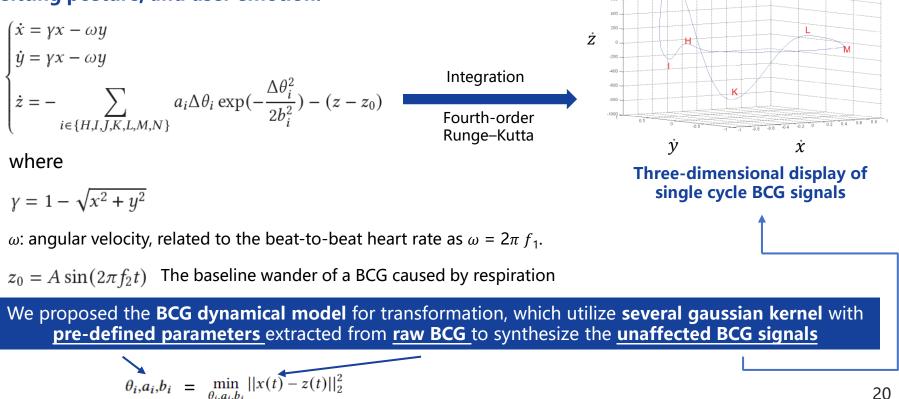
Ascending Aorta **Pressure Gradients**

 $S_{a}[P_{0}(t) - P_{1}(t)]$

Principle of NF-Heart

m₂: internal organs \geq $m_3 \& m_{3'}$: upper limbs

2.5


3

Advantages of **BCG Biometrics**

- Present in all living people
- Distinguishable across subjects
- Non-volitional \succ
- Hard to hide \triangleright
- Hard to forge
- Non-contact measurement

Methodology——Transformation

BCG dynamical model for eliminating effects of respiration, sitting posture, and user emotion.

