MagEar: Eavesdropping via Audio Recovery using Magnetic Side Channel

[MobiSys'2022]

Qianru Liao, Yongzhi Huang, Yandao Huang, Yuheng Zhong, Huitong Jin, Kaishun Wu*

Loudspeaker Structure

Loudspeaker working principle

permanent magnet

magnetic induction lines

MagEar

MagEar: Eavesdropping via Audio Recovery using Magnetic Side Channel

system design

Coil Design

<u>1. Geometric Shape</u>

$length_{1} = \sqrt{\pi D}$ $r, \theta)$ θ S_{circle} $S_{triangle}$ S_{square} r, θ T, θ θ S_{circle} $S_{triangle}$ $S_{triangle}$

2. Spiral or Cylindrical coil

Coil Design

3. Geometric Size

induced voltage
$$V_m = \frac{1}{2}\pi^2 f N D^2 B_m$$

4. Sensitivity

Sensitivity =
$$\frac{Vm}{Bm} = \frac{\pi^2}{8} \frac{l(D - D_{in})(D + D_{in})^2}{kd^2} f$$

reach maxmimum when $D_i/D = 1/3$

5. Signal-to-noise ratio

$$SNR = \frac{V_m}{V_T} = \frac{\pi^2 B_m f}{16k\sqrt{2k_B T \rho \Delta f}} \sqrt{l(D - D_{in})(D + D_{in})^3}$$

reach maxmimum when $D_i/D = 1/2$

- D: outer diameter D_{in}: inner diameter l: coil height
- *d*: wire diameter

<u>1. Frequency band Adjustment</u>

2. Interference Confrontation

\succ notch filter

 \succ spectral subtraction

$$|X(\omega)|^{2} = \begin{cases} |Y(\omega)|^{2} - \alpha |D(\omega)|^{2} & |Y(\omega)|^{2} > (\alpha + \beta) |D(\omega)|^{2} \\ \beta |D(\omega)|^{2} & else \end{cases}$$

Feature Enhancement

<u>3. Frequency Response Equalization</u>

 $V = \omega NSI_{\max} \cos(\omega t + \varphi)$

Receiver coil

Dataset

English speech audio from LibriTTS

Speech metrics

- ➢ MFCC
- > MOSNet
- Automatic speech recognition
 - Accuracy
 - Word Error Rate

Evaluation Eavesdropping on different speakers

1. Performance in phone call eavesdropping with different distances between the speaker and MagEar.

2. Results of eavesdropping through various obstacles.

3. Eavesdropping performance in different environments .

	Airpods		Iphone	
Scenarios	MFCC	MOSNet	MFCC	MOSNet
Laboratory (49 dB)	0.85	1.86	0.88	1.92
Home (44 dB)	0.867	1.993	0.907	2.109
Park (52 dB)	0.89	1.928	0.95	2.2
Restaurant (66 dB)	0.82	1.52	0.84	1.78
Coffee Shop (60 dB)	0.83	1.6	0.87	1.98

Table 1: Eavesdropping performance in different environments for Airpods and the iPhone Xs (distance=40 cm)

Thank you for your listening!

