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The increasingly remote workforce resulting from the global coronavirus pandemic has caused unprecedented cybersecurity
concerns to organizations. Considerable evidence has shown that one-pass authentication fails to meet security needs when
the workforce work from home. The recent advent of continuous authentication (CA) has shown the potential to solve this
predicament. In this paper, we propose NF-Heart, a physiological-based CA system utilizing a ballistocardiogram (BCG).
The key insight is that the BCG measures the body’s micro-movements produced by the recoil force of the body in reaction
to the cardiac ejection of blood, and we can infer cardiac biometrics from BCG signals. To measure BCG, we deploy a
lightweight accelerometer on an office chair, turning the common chair into a smart continuous identity “scanner”. We design
multiple stages of signal processing to decompose and transform the distorted BCG signals so that the effects of motion
artifacts and dynamic variations are eliminated. User-specific fiducial features are then extracted from the processed BCG
signals for authentication. We conduct comprehensive experiments on 105 subjects in terms of verification accuracy, security,
robustness, and long-term availability. The results demonstrate that NF-Heart achieves a mean balanced accuracy of 96.45%
and a median equal error rate of 3.83% for CA. The proposed signal processing pipeline is effective in addressing various
practical disturbances.
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Fig. 1. Illustration of NF-Heart in a factory scenario. With BCG measurements from the chair, the workers can be secure
remote workforce when sitting at home.

1 INTRODUCTION
The global coronavirus pandemic shifted tens of millions of workers from on site to remote work. [61] reported
that 54% of organizations have adopted a work-from-home policy in response to COVID-19. With an increasingly
remote workforce, the digital perimeter becomes proportionally porous and vulnerable. Enterprises and govern-
ments are facing unprecedented cybersecurity threats regarding equipment safety, data security, and privacy
leakage. According to [12], the attacks on usernames and passwords have undergone staggering growth of 450%
in 2020 from 2019, translating into more than one billion compromised records in the U.S.A. alone. This reveals
that traditional authentication schemes like passwords or pattern locks are vulnerable and insecure. It is urgent
to propose a reliable and trustworthy authentication scheme to verify the identity of the sit-at-home workforce.

Existing methods for CA can be categorized into two types. Behavioral biometrics-based CA systems leverage
the gait [65], gaze [56, 70], touching [2, 13], and keystroke [47, 51] dynamics to characterize users, which relies
on user involvement and limits to only a few application scenarios. Physiological biometrics-based CA systems
build upon the recent advance in bio-signal detection of wearable devices (e.g., ECG [72] and PPG [8, 71]).
However, these methods require direct skin contact for the measurement. Cardiac Scan [36] implements a novel
non-contact CA system by capturing the cardiac deformation with a DC-couple continuous wave Doppler radar.
RF-cardiography (RFG) detection needs expensive infrastructure and is error-prone in a dynamic environment.
In addition, above mentioned physiological biometrics-based systems still maintain authorized access when the
legal user presents nearby, providing a possible chance for the attacker to perform transient attacks.

In this paper, we propose NF-Heart, a secure and unobtrusive continuous authentication (CA) system based on
near-field non-contact ballistocardiogram (BCG) measurements. Nowadays, the amount of time that a person is
sitting has reached over 12 hours per day on average [26], accounting for around 75% of their awake time. In
addition, literature has shown that that the workers spend around 80% of their working hours sitting [16, 45].
Therefore, we turn a common chair into an identity “scanner” by deploying a lightweight accelerometer on the
chair. As shown in Figure 1, the system can continuously extract BCG biometrics for authentication when users
are seated.
NF-Heart can provide greater security by monitoring user actions and verify the user’s identity at every

moment during a session. Even if an attacker has gained the legitimate user’s credentials, NF-Heart can ensure
the user is not impersonated at any time.
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However, we need to tackle several challenges before transforming the above high-level ideas into practice:
1) The intrinsic heart rate variability and low power of BCG signals make segmentation and delineation rather
challenging. 2) BCG is susceptible to motion artifacts (MAs) that will distort BCG morphology and lead to
system failure. How can we eliminate the effects of arbitrary MAs and guarantee robust BCG measurement when
deploying NF-Heart in the wild? 3) The unavoidable effects of respiration, sitting posture, user emotion, and
sensor position on BCG signals are open issues that remain to be addressed [22]. The trained model may no
longer be applicable for authentication when any of these factors changes. Is there a way to extract stable and
invariant features from BCG?
To address these challenges, we first validate the uniqueness of BCG biometrics based on the BCG genesis

model and explore the characteristics of BCG signals by analyzing the relationships between each fiducial point.
Then, we propose to measure the instantaneous power of BCG signals for accurate heartbeat segmentation.
We further develop a Hidden Signal Quality Index (H-SQI) for detecting arbitrary types of MAs. A two-stage
MA-removal scheme is designed to recover the interfered BCG signals. The recovered signals are transformed
into the angle domain with a dynamical BCG model to deal with multiple dynamic factors. After that, we propose
a simplified U-net architecture to delineate 45 fiducial features and leverage a convolutional autoencoder (CAE)
to verify users.

We evaluate NF-Heart on a BCG dataset collected from 105 subjects. Our evaluation shows that NF-Heart is a
secure and trustworthy CA system that can verify users with a balanced accuracy (BAC) of 96.45% and an equal
error rate (EER) of 3.83%. We also conduct extensive experiments to examine the robustness and availability of
NF-Heart under various conditions. The results validate that NF-Heart can resist various practical disturbances
and attacks.
The main contributions of NF-Heart are summarized as follows:

• We propose a near-field continuous user authentication system using unique BCG biometrics. Our system can
guarantee the remote access security of organizations by continuously verifying the identity of work-at-home
staff.

• We design multiple stages of signal processing to recover distorted BCG signals for practical authentication in
actual situations. User-specific BCG features are successfully extracted using modified U-net architecture and
CAE framework.

• We design a smart chair for non-contact BCG measurements. We conduct extensive experiments involving 105
subjects to validate the security, availability, and robustness of NF-Heart.

2 BACKGROUND

2.1 Background of BCG Signals
Ballistocardiogram (BCG) signals provide details of cardiac activity, and its measurement do not need to be
obtained by attaching electrodes or sensors to the human body. There are considerable clinical research and
applications regarding BCG, including heart/respiration-rate monitoring [3, 6], blood-pressure monitoring [27, 28],
sleep-stage evaluation [20, 30], heart-rate variability (HRV) analyses [35, 53], infant monitoring in beds [32],
and so on. The non-contact and convenience of BCG measurement make BCG a good choice as a substitute for
electrocardiogram (ECG) in many scenarios.

Newton’s third law of motion is the primary physical principle of a BCG. During a cardiac cycle, blood mass is
ejected from the heart and passes through the vascular system. The blood flow is reflected by bodily motion in
the opposite direction, which maintains balance in the system’s overall gravity [49]. By recording the resultant
micro-vibrations of the human body using specialized apparatus, we can obtain a BCG waveform, as shown in
Figure 4. The BCG waves are named with capital letters G through N [57], with each letter representing a specific
cardiac cycle event [46] as shown in Table 3 in the Appendix. The BCG morphology characterizes the entire
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Fig. 2. Illustration of a vascular tree, BCG genesis model, and 6-DoF model for BCG.
Fig. 3. NF-Heart on a
plastic chair.
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(a) A normal BCG waveform
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(b) Distinctness of BCG waveform
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Fig. 4. (a) An example of a standard head-to-foot BCG waveform and the name of each component. A comparison of BCG
waveforms from two subjects where (b) is one heartbeat cycle and (c) is four consecutive heartbeats.

process of cardiac deformation and can not be controlled by the subjective thought of individuals. The recoil
force can be recorded as BCG signals whether the subject is standing, sitting, or lying flat [22].

2.2 BCG Genesis Model
As shown in Figure 2(a), the vascular tree of the human body is a very complicated system. Therefore, it is difficult
for researchers to model the BCG waveforms and explain the underlying mechanisms mathematically. It was not
until 2016 that the most well-acknowledged BCG genesis model was proposed by [29]. A BCG wave is estimated
as an instantaneous force exerted on the blood in the main artery, as shown in Figure 2(b). In brief, the BCG force
𝐹𝐵𝐶𝐺 can be mathematically expressed as:

𝐹𝐵𝐶𝐺 (𝑡) = 𝑆𝑑 [𝑃1 (𝑡) − 𝑃2 (𝑡)] − 𝑆𝑎 [𝑃0 (𝑡) − 𝑃1 (𝑡)] (1)

where 𝑆𝑑 and 𝑆𝑎 represent the average cross-sectional areas of the descending and ascending aorta, respectively,
and 𝑃0 (𝑡), 𝑃1 (𝑡), and 𝑃2 (𝑡) are the blood pressure waves of the ascending aorta inlet, arch outlet/inlet, and
descending aorta outlet, respectively. Based on this model, mechanistic insight for the genesis of BCG data is
then interpreted as the blood-pressure gradients in the ascending and descending aorta.
We can further model head-to-foot BCG transmission in the body with a multiple degrees-of-freedom (DoF)

spring–mass–damper model, as shown in Figure 2(c). The model consists of six mass elements indicating the
upper torso (𝑚1), internal organs (𝑚2), upper limbs (𝑚3 and𝑚3′ ), lower limbs (𝑚4), and external chair (𝑚5) for
BCG measurement. This model also contains seven pairs of spring (k) and damping (c) coefficients. These physical
parameters vary among different individuals [54]. BCG transmission from internal blood vessels to the external
body can be estimated as an encryption process due to non-linear effects [34]. The encrypted BCG signals are
measurable by the accelerometer on the chair, laying the fundamental principle for CA in NF-Heart.
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Fig. 5. Characteristics of BCG signals.

2.3 Characteristics of BCG Signals
Three-dimensional deformation of the heart induces unique mechanical vibrations because the cardiac cycle
states significantly differ in terms of volume, surface shape, and motion dynamics (i.e., displacement, velocity,
and acceleration) of the heart [9]. It is nearly impossible for two individuals to have the same heart, vascular
tree, and tissue characteristics [17]. The intra-subject variability of BCG data is low for a certain long period [58].
Therefore, the BCG data can serve as distinctive biometrics for each individual.

We conduct a pilot study on five subjects sitting on a prototype BCG chair (see Figure 3) and analyze their
BCG signals. Figure 4(b) plots one-cycle BCG samples from two subjects. The signals are aligned with the I-wave.
We can observe that the BCG patterns of the different subjects are distinct. For the same subject in Figure4(c), the
BCG signals maintain consistency over time, although the respiratory motion causes a slight variation in the
morphology.
Figure 5(a) depicts the probability density function (PDF) of the deviation in the time interval between two

consecutive heartbeats, and Figure 5(b) depicts the PDF of deviation during one cardiac cycle. These two figures
demonstrate the intrinsic HRV in BCG signals. In addition, we can also observe the variation of the amplitude
ratio of the J-peak to L-peak from Figure 5(c). Sometimes the L-peak value will be larger than the J-peak value.
Based on these observations, we can conclude that BCG signals vary in both amplitude and the timing of each
peak. This makes signal segmentation and delineation rather challenging. Fortunately, we also observe that the
deviation of the I–J interval is much smaller than that of the J–J interval. This indicates that BCG biometrics can
be extracted based on the relationships between each fiducial point. (see Section 5.1).

3 OVERVIEW OF NF-HEART

3.1 System Overview
The system architecture of NF-Heart is shown in Figure 6. It comprises several major procedures that allowed us
to build a secure, robust, and practical CA system using BCG biometrics.
The signal-processing pipeline first applies a bandpass filter to remove the high-frequency noise. Then, it

leverages an instantaneous power-based segmentation to acquire discrete cardiac cycles.
MAs often occur at a high frequencies in BCG signals, which prevents the practical deployment of BCG-based

applications. We first need to detect the time when MAs occur before removing it. Instead of using traditional
methods that rely on matching designated BCG templates or analyzing temporal statistics separately, we design
a Hidden Signal Quality Index (H-SQI) to accurately detect arbitrary types of MAs. Afterward, the detected
MA will go through a two-stage MA-removal using the complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN), and variable step-size least mean squares (VS-LMS) algorithms. The combination of
CEEMDAN and VS-LMS facilitates adaptive MA-removal according to the signal characteristics.
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Fig. 6. System overview of NF-Heart.

The signal processing pipeline ends up with a transformation step that eliminates the uncertain effects of
respiration, heart rate variability, and posture variation. The transformation process builds upon the elaborate
BCG dynamic model with 14 Gaussian kernels. It can eliminate the effect of uncertainties while maintaining the
local features in BCG signals. After signal processing, we obtain clean BCG signals.

The next step is to delineate BCG signals and extract user-specific features for authentication. Specifically, we
present the first attempt to delineate seven fiducial points of BCG using a modified lightweight U-net architecture.
We define 45 fiducial features for characterizing BCG signals. The user verification can be estimated as anomaly
detection, where the biometric signals of attackers are anomalies. Thus, we adopt the unsupervised convolutional
autoencoder (CAE) as our authentication model.

For a practical use case, a new user first needs to register their BCG biometrics in the system. The data collection
time will last for 2 minutes. The collected data will be used to train a private CAE model after pre-processing.
Afterward, if the users want to start a session, they will need to specify the identity (e.g., username) that they
wants to log in with. Then, NF-Heart will continuously read the BCG biometrics as the input of CAE to verify the
user’s legitimacy.

3.2 Attack Model
In this section, we introduce three major attack scenarios that NF-Heart may be against.

3.2.1 Spoofing Attacks. A spoofing attack is one of the most typical attacks in our daily lives, which indicates
when an imposter attempts to spoof the system with their cardiac biometrics and gain access to the system.
There is a high risk of divulging confidential information even if only several consecutive heartbeat cycles of the
imposter are erroneously authorized. To conduct a spoofing attack, the adversaries will sit on the chair with the
NF-Heart authentication system directly and attempt to imitate a legitimate user’s BCG biometrics by adjusting
their cardiac motion in different ways, such as holding breath and doing exercise.

3.2.2 Random Attacks. NF-Heart collects BCG signals with an accelerometer. Therefore, the vibrational interfer-
ence from the nearby environment may possibly be detected by the system. An attacker might attempt to forge
the periodic signal using different means, including but not limited to periodic actions of finger taps, percussion
with a hammer, and foot-stomping.

3.2.3 Replay Attacks. Nowadays, the leakage of biometric data is common. Thus, the cardiac pattern of legitimate
users might be somehow obtained by imposters, which gives an opportunity to conduct a replay attack. A user
authentication system (e.g., face recognition) is prone to suffer replay attacks if no liveness detection scheme is
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performed. In our case, we assume that the adversaries have obtained the BCG biometrics of legitimate users.
They can attach a vibrator on the chair to replay the original BCG signals for spoofing the NF-Heart system.
Note that we do not consider the replay attacks that the adversary directly inputs the BCG signals into the
on-device/on-cloud CAE model by hacking the inner data transmission pipeline in this paper.

4 SIGNAL PROCESSING

4.1 Bandpass Filtering
The BCG measurement is realized by attaching a three-axis accelerometer to the chair’s back. The BCG sensor
mainly records data from the torso section when a user is seated. There is no direct contact between the sensor and
the user’s skin. BCG signals manifest as ultra-low frequency and have a narrow bandwidth of 0.5 - 10 Hz [49]. Thus,
we apply a third-order Butterworth bandpass filter within this bandwidth to remove high-frequency interference
and low-frequency noise (e.g., baseline drift, DC components, and respiration). However, the morphology of BCG
is influenced by lung volume [22], and distortions caused by breath motion, which are hard to completely reverse
with a bandpass filter. Besides respiratory interference, it is unfortunate that the BCG signal bandwidth coincides
with other interference sources, such as body movement. Therefore, a further MA detection and removal scheme
will be discussed to enhance system performance.

4.2 Segmentation
An early stage of segmentation is indispensable, which prepares the discrete cardiac cycles for the execution of
subsequent modules. To extract each heartbeat, we design an intuitive algorithm to locate the prominent J-peak.
As shown in Figure 7, we observe that the N–H interval between two heartbeats is relatively smooth. Thus, we
leverage the instantaneous power (𝐼𝑃 = 𝐹𝑜𝑟𝑐𝑒 ×𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦) to enhance this smoothness as:

𝐼𝑃 =𝑚0𝑎(𝑡) ·
∫

𝑎(𝑡) (2)

where 𝑎(𝑡) consists of accelerometer readings and𝑚0 is the mass, which is set as a constant. Now we can get
the location of the J-peak (𝐿𝑜𝑐 𝐽 ) through the local maximum IP. The typical length of a cardiac cycle is set as
[𝐿𝑜𝑐 𝐽 − 0.3𝑠, 𝐿𝑜𝑐 𝐽 + 0.5𝑠].

4.3 Two-stage Motion Artifact Removal
In this section we present our two-stage MA-removal scheme for addressing the long-standing open issue
regarding motion artifact effect.

4.3.1 Motion Artifact Detection. We first use a bandpass filter to remove filterable high-frequency noise (> 10𝐻𝑧).
Afterward, we focus on tackling any “unfilterable” noise superposed upon the BCG signals in the same frequency
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band. From the perspective of noise duration in the time domain, we can classify the noise into two types.
The first one is sudden noise, which is short and pulse-like. The causes of sudden noise could be subconscious
posture changes or items falling on the ground. The second type is continuous noise, which could be caused by
continuously typing on a keyboard during office work and swaying of the body to musical rhythms.
MA detection should accurately detect the time when an MA occurs. Targeted processing of detected noise

segments instead of the whole time series can effectively reduce unnecessary computation overheads. Traditional
methods for MA detection are based on calculating the correlation level between a template signal and current
signal [67]. Another way is to set empirical thresholds of some statistics such as standard deviation, skewness,
kurtosis, and so on [71]. However, there are many types of noise in real scenarios; correspondingly, the degree and
duration of the influence of MAs on BCG morphology will vary case by case. Hence, it is difficult for traditional
methods to cover different types of MAs.

To tackle different cardiac conditions and signal abnormalities, our idea is to proposed a comprehensive signal
quality index (SQI) to evaluate each segment and judge whether the segment is a valid and high-fidelity BCG
cycle or not. We attempt to measure seven temporal statistics, including the standard deviation, root mean
square, kurtosis, skewness, impulse factor, clearance factor, and shape factor. However, it is hard to empirically
constitute a uniform formula (i.e., SQI) with these statistics. Therefore, we resort to machine-learning techniques.
Specifically, we leverage the Hidden Markov Model (HMM) [48] to acquire the SQI. HMM is a classic and effective
algorithm for speech detection. The key insight here is that HMM was effective in speech detection in the earlier
days of speech recognition. It can effectively recognize the same word pronounced by different people. Therefore,
we can take the BCG cycle that varies from person to person as a “word”. We separately trained two HMM
models using raw BCG signals and seven statistics. We can finally get the Hidden Signal Quality Index (H-SQI)
by summing up the output probability values of two HMM model (two HMM model provide better outcome).
The H-SQI result of a template BCG is shown in Figure 8.

We use the manually examined BCG segments from different users to train a lightweight HMM template. The
Baum–Welch algorithm [66] is used to estimate model parameters. Segments that have low H-SQIs will be fed
into the next step for MA removal.

4.3.2 Motion Artifact Removal. There are two schemes for MA removal after MAs are detected. The first one is to
delete the interfered part directly. This scheme is simple but crude. It will make the heartbeat signal discontinuous
and result in the lose of much sequential information. In addition, it will degrade the system’s performance if
multiple cycles are needed for user authentication. In some extreme cases with continuous interference, the
system may receive zero cycle and fail to work.
Another scheme is to reconstruct a noisy waveform back to a clean one. This is challenging because the

collected BCG signals are aliased with a lot of interference in the same frequency band. A common solution
is to perform interpolation based on the information of clean adjacent cycles to replace the contaminated part.
However, this is not applicable for continuous MAs.
Therefore, we design a two-stage MA-removal scheme for both sudden and continuous MAs. The first stage

decomposes the raw signal into multiple components and eliminates components that distort signal’s morphology.
Through linear combination, the remaining components will form a reconstructed intermediate signal fed into
an adaptive filter for deeper noise cancellation.
The first stage with CEEMD. The BCG signals aliased with various random noise are nonlinear and non-

stationary signals. Decomposition based on wavelet transform is very suitable for such kinds of signals. However,
wavelet transform requires choosing a suitable wavelet basis function, which indicates that the wavelet-based
method cannot perform optimal decomposition according to the structural characteristics of each person’s
BCG signals. Therefore, we adopt the empirical mode decomposition (EMD) method, which is also designed for
processing nonlinear and non-stationary time-series, for the first stage of MA removal.
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EMD can perform adaptive signal decomposition based on the time-scale characteristics of the signal itself.
Compared with wavelet-based methods, it does not need to determine a basis function in advance. It can
decompose a complicated signal into a finite number of intrinsic mode functions (IMFs) as shown in Figure 8. The
decomposed IMF components are instantaneous frequency components, which contain the local characteristics
of the original signal at different time scales.
Specifically, we adopt CEEMDAN algorithm [60], which is an improved version of EMD [19]. Compared

to EMD, CEEMDAN addresses the mode-mixing problem in EMD by adding random white noise to the raw
signal, and it can use a fewer number of sifting iterations to decompose signals into IMFs with less noise for
reconstruction.
CEEMDAN iterates upon the EMD approach, where the BCG data 𝑥 (𝑡) is decomposed into several IMFs

(𝑘 = 1, 2, . . . , 𝐾 ) and residual 𝑟𝐾 :

𝑥 (𝑡) =
𝐾∑︁
𝑘=1

𝐼𝑀𝐹𝑘 + 𝑟𝐾 (3)

Each IMF is subject to the following two constraints: 1) the number of extrema and the number of zero-crossings
must equal or differ at most by one; 2)the mean value of the upper and lower envelopes defined by the extrema
is zero at any point. The procedure of extracting an IMF is called sifting. We refer the readers to [19] for more
details about sifting.

Now we define the operator 𝐸j (·), which produces the 𝑗-th mode calculated by EMD and let Y𝑘 be coefficients
that allow SNR selection at each stage. CEEMDAN algorithm can be described as following steps:
(1) Generate 𝑥𝑖 (𝑡) = 𝑥 (𝑡) + Y0𝑛𝑖 (𝑡), 𝑖 = 1, 2, . . . , 𝐼 , where 𝑛𝑖 (𝑡) are white Gaussian noise.
(2) Decompose 𝑥𝑖 (𝑡) with EMD, finding the modes 𝐼𝑀𝐹 𝑖

𝑘
, where 𝑘 = 1, 2, . . . , 𝐾 .

(3) At the first stage (𝑘 = 1), the first mode �𝐼𝑀𝐹1 and first residual 𝑟1 are computed as
�𝐼𝑀𝐹1 = 1

𝐼

𝐼∑
𝑖=1
𝐼𝑀𝐹 𝑖1

𝑟1 = 𝑥 (𝑡) − �𝐼𝑀𝐹1 (4)

(4) The first residual is forwarded to the next stage. The second mode can be obtained by decomposing
realizations 𝑟1 + Y1𝐸1 (𝑛𝑖 (𝑡)). Formally, the second IMF is defined as:

�𝐼𝑀𝐹2 = 1
𝐼

𝐼∑︁
𝑖=1

𝐸1
(
𝑟1 + Y1𝐸1 (𝑛𝑖 (𝑡))

)
(5)

(5) For 𝑘 = 2, . . . , 𝐾 , we have the 𝑘-th IMF and residual:
�𝐼𝑀𝐹𝑘 = 1

𝐼

𝐼∑
𝑖=1
𝐸1 (𝑟𝑘−1 + Y𝑘−1𝐸𝑘−1 (𝑛𝑖 (𝑡)))

𝑟𝑘 = 𝑟𝑘−1 − �𝐼𝑀𝐹𝑘 (6)

The decomposition stops until the obtained 𝐾-th residual is no longer feasible to be decomposed. The decom-
posed IMFs follow the descending order of the frequency (i.e., the frequency of 𝐼𝑀𝐹1 is higher than that of 𝐼𝑀𝐹2 ).
The IMFs of higher frequencies tend to be noise or MAs. A correlation-based IMF selection metric [68] is applied
to remove the undesired IMFs and form a final IMF set S for reconstruction. Therefore, the reconstructed BCG is
expressed as:

𝑥 (𝑡) =
∑︁
𝑘∈S

𝐼𝑀𝐹𝑘 + 𝑟𝐾 (7)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 16. Publication date: March 2023.



16:10 • Huang et al.

The second stage with VS-LMS. Unfortunately, the pseudo-periodicity of BCG signals makes it impossible to
completely eliminate MAs with only CEEMD. There are still some residual MA components in the decomposed
IMFs. We need to perform adaptive filtering to further optimize the quality of the BCG signals.

Adaptive filtering allows for the automatic adjustment of filtering parameters to achieve optimal performance
according to the input signal’s actual situation and structural characteristics. The least mean square (LMS)
adaptive filter is one of the most prevalently used adaptive filters. It has a simple structure, stable performance,
and low computational complexity. But the main disadvantage of LMS is that its convergence speed is relatively
slow. Therefore, we apply the variable step-size least mean squares (VS-LMS) [31] for the second stage of MA
removal to get a faster convergence speed and lower steady-state error. The reconstructed BCG signals can be
seen in Figure 8.

4.4 Transformation
Signal variability is another critical challenge for CA using heartbeat biometrics. For BCG signals, in addition
to being affected by intrinsic HRV, the signal morphology will also be affected by other uncertainties such as
different respiration patterns, sitting postures, and emotional states. It is non-trivial to design a method that can
eliminate these multiple uncertainties while retaining the user-specific characteristics of BCG signals.
To this end, we adopted and modified the dynamical ECG model of [39], thus proposing the BCG dynamical

model for transformation as follows:
¤𝑥 = 𝛾𝑥 − 𝜔𝑦
¤𝑦 = 𝛾𝑥 − 𝜔𝑦

¤𝑧 = −
∑︁

𝑖∈{𝐻,𝐼,𝐽 ,𝐾,𝐿,𝑀,𝑁 }
𝑎𝑖Δ\𝑖 exp(−

Δ\ 2𝑖
2𝑏2
𝑖

) − (𝑧 − 𝑧0)
(8)

where 𝛾 = 1 −
√︁
𝑥2 + 𝑦2 and 𝜔 is the angular velocity, which is related to the beat-to-beat heart rate as 𝜔 = 2𝜋 𝑓1.

Δ\𝑖 = (\ − \𝑖 ) mod 2𝜋 , where \ = arctan(𝑦/𝑥). The BCG signals’ H-, I-, J-, K-, L-, N-, M-waves are transformed
with a Gaussian kernel. The kernel parameters contain \𝑖 , 𝑎𝑖 , and 𝑏𝑖 , referring to the center position, peak
amplitude, and width of each wave, respectively. The baseline wander of a BCG caused by respiration is modeled
with 𝑧0 = 𝐴 sin(2𝜋 𝑓2𝑡), where 𝑓2 is the respiratory frequency. We can remove the respiration effect by neglecting
the 𝑧0 term. The transformation of BCG signals is finished by integrating the ¤𝑧 equation using the fourth-order
Runge–Kutta method [59] with a fixed time step Δ𝑡 = 1/𝑓𝑠 where 𝑓𝑠 is the sampling frequency. To address the
intrinsic asymmetry problem [10] of BCG signals, we assign two Gaussian kernels to each wave (14 kernels in
total). The kernel-parameters fitting can be considered as a minimization problem between the raw BCG signals
𝑥 (𝑡) and 𝑧 (𝑡), that is:

min
\𝑖 ,𝑎𝑖 ,𝑏𝑖

| |𝑥 (𝑡) − 𝑧 (𝑡) | |22 (9)

over all seven 𝑖 . Equation (9) can be easily solved using multi-dimensional gradient descent in parameter space
[42].

5 FEATURE EXTRACTION AND USER AUTHENTICATION MODEL

5.1 Definition of Fiducial Features
Robust heart biometrics-based authentication highly relies on extracting unique and invariant features. The
fiducial-point method is one of the most effective ways to achieve this. The fiducial points are indicators of each
cardiac event and have physiological meanings in clinical practice. The fiducial features can provide intrinsic
geometrical information of the heart and reflect 3D deformation when the heart is pumping. Here, we present
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Fig. 9. Definition of fiducial points (H to N). AS, IC, VE, IR, and VF are cardiac events detailed in Appendix.

Table 1. The definition of fiducial features based on fiducial-point delineation.

Feature Type Feature Name Description

Time Interval DU=T(H, N), T(H, I), T(I, J), T(J, K), T(K, L), T(L, M), T(M, N) Time interval between each
T(H’, I’), T(I’, J’), T(J’, K’), T(K’, L’), T(L’, M’), T(M’, N’) two consecutive fiducial points

Time Ratio T(H, I)/DU, T(I, J)/DU, T(J, K)/DU, T(K, L)/DU, T(L, M)/DU, T(M, N)/DU Ratios of section to whole cycle

Extremum A(H), A(I), A(J), A(K), A(L), A(M), A(N) Peak values of fiducial pointsA(H’), A(I’), A(J’), A(K’), A(L’), A(M’), A(N’)

Displacement |A(H)-A(I)|, |A(I)-A(J)|, |A(J)-A(K)|, |A(K)-A(L)|, |A(L)-A(M)|, |A(M)-A(N)| Differences between Y-axis of points

Area Under Curve AUC(H, I), AUC(I, J), AUC(J, K), AUC(K, L), AUC(L, M), AUC(M,N) Area enclosed by 𝑆𝑏𝑐𝑔 (𝑎, 𝑏) and 𝑌 =𝑚𝑖𝑛(𝑆𝑏𝑐𝑔)

the first exploration of extracting 45 BCG geometrical features based on the seven fiducial points, i.e., peaks H to
N, as shown in Figure 9. Note that we also extract the corresponding fiducial points on the first derivative of
BCG signals, i.e., peaks H’ to N’. We neglect G-peak because it often disappears.
As described in Table 1, we define five types of fiducial features, including the time interval, time ratio,

extremum, displacement, and area under curve (AUC). As shown in Figure 9, we define the duration (DU) of
one-cycle BCG signals (𝑆𝑏𝑐𝑔) as the time interval between the H and N peak. One cycle is divided into 6 sections
depending on the timing of the fiducial points. Particularly, the AUC refers to the area enclosed by a specific
section of 𝑆𝑏𝑐𝑔 and the horizontal line 𝑌 =𝑚𝑖𝑛(𝑆𝑏𝑐𝑔).

5.2 BCG Delineation
Previous works for BCG delineation mainly focused on locating the most prominent J-peak using an envelope
analysis [43] and correlation-based template matching [52]. The purpose of such kind of delineation is to measure
the heart rate. It seems to be easier to label all the other fiducial points after determining the J-peak. [1] assumed
that the other fiducial points have a relatively fixed relationship with the J-peak and will present in a certain
empirical search-range from J-peak’s location. However, this assumption is contrary to the actual situation,
making this method error-prone. In addition, an adaptive algorithm for deciding the search-range remains to be
designed to address the individual’s variability.
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To achieve the accurate delineation of BCG signals, we take advantage of deep-learning techniques to automat-
ically label fiducial points. Specifically, NF-Heart refers to a deep convolutional neural network (CNN)—the U-net
architecture [50], which has been widely used in the precise segmentation of biomedical images. Compared to
the original U-net architecture, we modify and refine it by removing the convolution layer in the middle of each
level so that it can precisely locate fiducial points on one-dimensional BCG signals with fewer parameters.

The modified U-net architecture for BCG delineation is shown in Figure 10. It consists of contracting layers on
the left side and expansive layers on the right side. Each rectangle is a multi-channel feature map whose height is
the number of sample points and width is the number of channels. Particularly, the white rectangle is a copy of
the feature map from the left side to the right side. Three-channel (3-axis) BCG signals with 160 sample points
are fed into the contracting layers. Each floor follows the typical architecture of one CNN with zero-padding
convolution, batch normalization (BN), and a rectified linear unit (ReLU). Then, a max-pooling operation with
stride 2 is used for downsampling into the next floor. The expansive layers account for the upsampling of the
feature map with deconvolution that halves the number of channels. The output feature map from the left side is
concatenated to the right side of the same floor. NF-Heart aims to label seven fiducial points, i.e., H peak to N
peak. Hence, the output layer has seven channels where each channel vector indicates the probability of each
sample point as a corresponding fiducial point. The cross-entropy loss function is used for training the network
parameters. In summary, the input BCG segment is forward propagated through the U-net architecture, and
NF-Heart can automatically label the seven fiducial points based on the output probabilities. In the end, the
corresponding fiducial features is extracted.

5.3 User Authentication Model
We adopt the CAE [38] as the user authentication model. The intuition behind this is that we can consider the
verification process as noise detection, where a legitimate user’s BCG signals are valid, but that of an attacker is
noise.

A CAE consists of an encoder and decoder, as shown in Figure 11(c). The encoder is responsible for encoding
the input BCG signals by mapping it into a lower-dimensional latent space using four levels of convolution. We
aggregate the latent features with pre-extracted fiducial features. Then, the aggregated features are utilized for
decoding. The decoder will reconstruct the original input BCG signals using one layer of fully connected neural
network. The input BCG of attackers cannot be reconstructed using the trained CAE model of legitimate users.
The parameters of CAE are trained by minimizing the mean square error loss function between the input BCG
and reconstructed BCG.
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There are two benefits of using CAE: 1) The CAE is unsupervised learning; thus, no prior knowledge of the
attacker is required to train the model parameters. 2) The convolution layer can further extract some other useful
features from the raw 3-channel BCG signals. Note that we do not extract frequency-domain features because of
the ultra-low frequency bandwidth of BCG signals.

6 EVALUATION

6.1 Experimental Setup
6.1.1 Implementation. We prototype NF-Heart with BCG measurement using a Murata 3-axis accelerometer
SCA3300-D01. We deploy the sensor node on the chair’s back to collect the BCG signals of the seated users, as
shown in Figure 3. The sampling frequency of the BCG sensor is set to 1000 Hz. The BCG readings are transmitted
to a laptop through the wire for further signal processing and user authentication.

6.1.2 Cardiac Data Collection. We recruit 105 healthy subjects (32 of them are females) with an age range of
18 to 57 from our university. We construct a main dataset with 105 subjects’ BCG samples to demonstrate the
baseline performance of NF-Heart. The subjects involved in the main dataset are asked to sit still and recline
against the chair’s back for 5 minutes. In addition, we further ask 10 subjects to evaluate the system’s robustness
and the data of which form several separate sub-datasets. The different experimental conditions of sub-datasets
will be specified in the corresponding section. Note that the conducted experiments conform to the IRB protocol
(PN-2020-040) of our university.

6.1.3 Authentication Strategy. We alternately designated each subject as a legitimate user, and the remaining
𝑁 − 1 subjects take the role of an attacker to test the system model (N = 105).

6.2 Evaluation Metrics
To evaluate the system, we use several evaluation metrics including the balanced accuracy (BAC), receiver
operating characteristic (ROC), area under curve (AUC), and equal error rate (EER).

6.2.1 Accuracy Metrics. The distribution of positive and negative samples is unbalanced in our case, so we adapt
the BAC to evaluate the system accuracy. BAC is not sensitive to the class distribution and can prevent misleading
accuracy measurements. The BAC equally combines the true positive rate (TPR) and true negative rate (TNR),
which is defined as:

𝐵𝐴𝐶 =
𝑇𝑃𝑅 +𝑇𝑁𝑅

2
=

0.5 ×𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 0.5 ×𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (10)

where𝑇𝑃 ,𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 refer to the true positive, true negative, false positive, and false negative, respectively.
𝑇𝑃 + 𝐹𝑁 and 𝑇𝑁 + 𝐹𝑃 are the amounts of positive samples and negative samples, respectively.

6.2.2 ROC Curve. An ROC curve is obtained by plotting the TPR against the false positive rate (FPR) under
different loss thresholds. TPR indicates the percentage of samples that are correctly identified as legitimate samples
in all legitimate test samples, while FPR is defined as the percentage of samples that are wrongly identified as
legitimate samples in attack samples. Equal error rate (EER) is the point where the FPR is equal to the 1 −𝑇𝑃𝑅
(i.e., false negative rate).

6.3 Verification Accuracy
6.3.1 Impact of Training Set Size. New users must first record their heartprint into NF-Heart to initialize their
own authentication model. In this experiment, we explore the impact of different heartprint collection time
(HCT), i.e., different training set sizes, on verification performance. Specifically, we increase the HCT from 0.5 to
3.5 minutes with a step size of 0.5 minutes. In order to collect as many samples as possible, a sliding window
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with a stride of 1 cycle is used to collect seven consecutive cardiac cycles as training samples. Figure 12 shows
the effect of different HCT on the accuracy of verifying legitimate users. It can be seen that when the HCT is
0.5 minutes, NF-Heart can provide a high verification accuracy of about 86.30%. The BAC then rises to above
96.45% on average when HCT extends to 2 minutes. A further extension of HCT can only provide a marginal
improvement in accuracy. Therefore, the optimal HCG should be 2 minutes, and we adopt this setting for the
following experiments.

6.3.2 Impact of Feature Subset. We also validate the effectiveness of the fiducial features, where the results are
shown in Figure 12. Obviously, the fiducial features capture geometric deformation of the heart well and yield a
higher verification accuracy and lower EER compared to using only raw signals. On average, BAC improves by
4.56%, and EER declines by 4.23% when HCT equals 2 minutes.

6.3.3 Impact of Cardiac Cycles Number. Another important parameter that affects authentication performance
is the number of cardiac cycles used for authentication. Theoretically, extra heartbeat cycles can provide more
biometric information to achieve higher verification accuracy. To validate this assumption, we evaluate our
system using different segment lengths. Figure 13 (b) depicts the ROC curves for different numbers of cardiac
cycles. The AUC for each curve is 0.9149, 0.9540, 0.9685 and 0.9799 for segments with 1 cycle, 3 cycles, 5 cycles,
and 7 cycles, respectively. In addition, as shown in Figure 13 (c), the median EER is 15.06%, 10.74%, 7.33% and
3.83% for 1 cycle, 3 cycles, 5 cycles, and 7 cycles, respectively.

6.4 Security Analysis
In this section, we investigate the vulnerability of NF-Heart and validate that our proposed CA scheme is safe
and secure under the three types of attacks described in Section 3.1.

6.4.1 Spoofing Attacks. To simulate the spoofing attacks, we feed the adversary samples to test the trained
legitimate user’s model. Each legitimate model will be attacked by 104 patterns of BCG biometrics. Note that we
have presented the comprehensive results for spoofing attacks in the previous section. In summary, NF-hear
achieves a median false positive rate (FPR) of 3.83% when the heartprint collection time is 2 minutes and the
segment length is seven cardiac cycles. This indicates that the BCG biometrics is hard to be imitated by adversaries,
and NF-Heart can resist the spoofing attack.

6.4.2 Random Attacks. For a live individual, his/her cardiac activity is non-volitional, and their heart-based
biometrics are hard to hide once they sit on the chair equipped with the NF-Heart system. Suppose that no one is
sitting on the chair: NF-Heart may still detect a periodic signal and activate the authentication pipeline since we
use the energy-based algorithm for segmentation. Therefore, we perform a random attack by generating periodic
vibrations produced by finger taps, hammer percussion, and foot stomps. Each action lasts for 3 minutes, and
the execution frequency is 70 bpm synchronized with a metronome. Then the generated signals are used as test
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samples to attack every subject in the main dataset. The results show that none of the random attack samples can
be successfully authenticated.

6.4.3 Replay Attacks. Replay attacks are the most significant threat to biometrics-based authentication systems.
It is common that the users’ biometric tokens (e.g., face and fingerprint) to be stolen or leaked by a third party.
Although heartbeat biometrics are more complex, implicit, and dynamic, thus making them harder to counterfeit,
we have to validate that NF-Heart is not vulnerable to replay attacks. Specifically, we use a vibration microphone
to replay each subject’s original BCG signals and the accelerometer sensor to collect the replayed BCG signals,
which are then added to the test samples of the corresponding subject. The result shows that all replay attacks
are rejected by NF-heart. The rationale of this result can be revealed in Figure 2, where the BCG signals are
modulated by the individual’s unique body (i.e., unique vascular structure and spring-mass-damper coefficient).
A simple replay of raw BCG signals can not achieve the proper harmony and coupling of the system. Thus,
the received accelerometer readings are actually distorted to varying degrees. This is like the near-field BCG
biometrics feature with a liveness detection function intrinsically.

6.5 Robustness
In this section, we evaluate the system’s robustness under different practical situations and validate the effec-
tiveness of the proposed signal-processing pipeline. A long-term study is also conducted to show the temporal
stability of NF-Heart.

6.5.1 Motion Artifacts. All subjects are first asked to sit still for 5 minutes to collect baseline BCG samples. Then,
they are asked to perform five rounds of MA collection, including making a phone call, flipping a book, swaying
to the music, typing on a keyboard, and sudden body motions. Each round lasts for 2 minutes. The first four
rounds are continuous MAs performed for 15 s after every 15-second static rest. As a result, one out of two
minutes of the BCG signals interfere with the continuous MAs. Particularly, a sudden body motion is performed
once every 10 s. Figure 14 shows the impact of different MAs and the effectiveness of our MA-removal scheme.
Comparing to the baseline result, the MA removal algorithm increases the BAC by 26.93% and reduces the EER
by 29.64%on average. Thus, the system performance can be significantly improved after enabling MA removal.

6.5.2 User State. In practical usage, users undergo different sitting postures and emotional states, resulting in
different heart rates and BCG morphologies. In this experiment, we investigate the impact of different user states
on system performance and validate the efficacy of using the transformation technique to eliminate negative
effects. Specifically, the subjects are asked to perform other three sitting postures (i.e., turn left 30◦, turn right
30◦, and sit up without reclining) that are different from the baseline posture (i.e., reclining on the chair). To
simulate different emotional states, the subjects are asked to raise their heart rate to over 120 bpm through
exercise before data collection. Their heart rate will gradually restore to normal level (50-80 bpm) during the data
collection process. Each type of state lasts for 2 minutes. In Figure 15, the varying user states degrade the system
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Fig. 16. Temporal stability over 14 days.

performance to different degrees as expected, where the BAC declines by 22.76%, and EER rises by 23.93% on
average. Fortunately, the system performance can be restored by applying the transformation to the BCG signals.

6.5.3 Temporal Stability. An authentication system of high availability should maintain long-term performance.
To validate this critical ability of NF-Heart, we conduct an experiment spanning 14 days. Ten subjects are asked
to collect their BCG signals for testing on the same day (where data from day 0 are used as baseline), after 1
day, 2 days, 7 days, and 14 days. Figure 16 demonstrates how the BAC and EER of NF-Heart change over time.
Overall, the BAC is higher than 94.50%, and EER is lower than 4.90%. On the fourteenth day, the BAC and EER
have no large variation, achieving 94.86% and 4.85%, respectively. Thus, we can conclude that the performance of
NF-Heart has no significant degradation after a 14-day period and the BCG biometrics are robust against temporal
changes. However, the BCG biometrics may vary over a longer period than 14 days, resulting in performance
degradation. In addition, the body status changes due to some diseases may also introduce variance to the original
BCG morphology. We would suggest a calibration process with moderate frequency (e.g., 14 days) in practical
use.

7 RELATED WORK
Heartbeat-based identification: Heartbeats are measurable vital signs in all living individuals. The deformation
of the heart is unique across different subjects, and the heartbeat signals are hard to hide and forge, making
heart-based biometrics an attractive approach for identifying users. ECG sensors are widely deployed in the
heart-based identification systems to capture heart bio-signals [44]. Zhao et al. [72] propose an ECG-based
identification system using ensemble empirical mode decomposition. Heartbeat features are extracted by a Welch
spectral analysis after the signal decomposition into multiple intrinsic mode functions. Heart-based biometrics
are also used in mobile devices for user identification. Wang et al. [63] attach the smartphone to the chest of
users to collect the seismocardiogram (SCG) signals using the built-in accelerometer. SCG signals refer to the
vibrational response of the chest to the heart. The system authenticates users based on the correlation of SCG
features extracted using discrete wavelet transform (DWT). CardioCam [37] captures cardiac biometrics from
reflected lights when pressing a fingertip on the camera of a mobile phone.

For one-pass BCG authentication, Guo et al. [15] validate the feasibility of identifying individuals by analyzing
the correlation between BCG signals collected with three S-beam load-cell sensors. The system performance
is further improved by applying recurrent neural networks [69]. Hebert et al. [18] collect BCG signals using
the inertial measurement unit (IMU) on a smart eyewear device for user authentication. In [23], the authors
customize a glass-made floor tile in the kitchen and bathroom and embed four load cells inside the tile to collect
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Table 2. Comparison of cardiac biometrics-based user authentication studies.

Work Biometrics Sensing Modality Input Features Methods Subjects Performance CA MA
Tolerant

Guo et al. [15] BCG Three load-cell sensors
on chair raw BCG Pearson

Correlation 25 96% accuracy $ $

Zhang et al. [69] BCG Three load-cell sensors
on chair raw BCG LSTM 91 97.8% accuracy,

0.9% EER $ $

Herbert et al. [18] BCG Accelerometer & gyroscope
in smart Eyewear raw BCG CNN 12 3.5% EER $ $

Javaid et al. [23] BCG Four load-cell sensors
below glass tile

Discrete cosine
transform

Linear
Discriminant 56 96.15% accuracy $ $

Camara et al. [7] ECG ECG electrodes Walsh-Hadamard
Transform KNN-DNN 10 84.8% accuracy " $

Trueheart [71] PPG Wrist-worn PPG 5 Fiducial Features Gradient
Boost Tree 20 90.65% accuracy " "

PPGPass [8] PPG Wrist-worn PPG 40 Fiducial Features Random
Forest 7 95.3% F1 score " "

CardiacScan [36] Cardiac
motion

DC-coupled
continuous-wave radar 8 Fiducial Features SVM+DTW 78 98.61% BAC,

4.42% EER " $

NF-Heart BCG Accelerometer
on chair back

raw BCG+
45 Fiducial Features Autoencoder 105 96.45% BAC,

3.83% EER " "

BCG signals. The proposed system calculated the discrete cosine transform (DCT) of the BCG sequence as
features and identified samples with a linear discriminant (LD) classifier. In Table 2, we compare NF-Heart with
existing BCG-based user authentication studies. On the other hand, we design a smart chair with a lightweight
accelerometer for continuous user authentication. For the first time, we extract 45 fiducial features of BCG
biometrics and tackle many practical interferences (e.g., motion artifacts), enhancing the system’s usability and
robustness.

Continuous user authentication: Traditional user authentication methods, such as password, grid pattern,
fingerprint, iris scanning, and facial recognition identify the user only once at the very beginning, which is
prone to be impersonated by attackers. In order to reduce the chance of impersonation, CA has been proposed
to recheck the user’s identity with a high frequency and distinguish between authorized users and impostors.
Therefore, CA goes a step forward, strengthening system security and user safety. The proposed CA methods can
be categorized into two main classes, namely, behavioral-based and physiological-based. Behavioral biometrics-
based CA systems leverage the gait [65], gaze [56, 70], screen-touching [2, 13], hand gestures [55, 62], and
keystroke [47, 51] dynamics to characterize users. These methods require the intensive involvement of users to
perform specific actions for CA, which is inconvenient and limited to only a few application scenarios.
In Table 2, we compare different cardiac biometrics-based CA schemes. Carmara et al. [7] regarded the

ECG signals as a continuous data stream and applied data stream mining (DSM) to explore bio-signals for CA.
TrueHeart [71] and PPGPass [8] design low-cost CA schemes by exploiting the pulse bio-signals from PPG
sensors. However, ECG-based and PPG-based systems are typically wearable devices and demand the user to
make direct contact with the sensors, making the authentication procedure user-unfriendly. In contrast, RF-based
systems can perform CA in a contactless manner. Cardiac Scan [36] employs a DC-coupled continuous-wave
radar to capture high-fidelity heartbeat motion and extracts eight fiducial-based descriptors for real-time CA.
However, RF-based systems are sensitive to the environmental variation and device settings (e.g., the angle and
the distance of the device to the target). Compared to RF-based methods, NF-Heart not only provide a non-contact
and unobtrusive scheme for CA but also has higher resilience to environmental changes and interference.
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Fig. 17. The illustration of more application scenarios.
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Fig. 18. The magnitude and morphology of BCG are consistent even with thicker padding between the user and the chair.

8 DISCUSSION

8.1 Extensive Application Scenarios
In fact, the practical deployment of NF-Heart can facilitate many other valuable applications, as shown in Figure
17. We envision that NF-Heart will include but not limited to the following application scenarios: 1) In the home
environment, NF-Heart can dynamically adapt the ambient temperature, humidity, lighting conditions, music
preferences, and TV preferences according to the family members’ sitting locations. 2) In the workplace, NF-Heart
can visualize the distribution of personnel and better manage energy use. 3) Furthermore, NF-Heart can ensure
the safety of company assets. For specific equipment, it can only be operated or remote-controlled by authorized
users. 4) For transportation, NF-heart can guarantee the legitimacy of drivers and avoid theft or hijack.

8.2 Failure Cases
In Section 6.5.1, we verify that NF-heart is resilient to MAs caused by body movement in daily work. However,
what is the upper tolerance for interference? Is there any extreme case that may cause authentication failures,
such as wearing heavy clothes, construction, or transportation? To answer these questions, we conduct several
pilot experiments under different cases and plot the representative results in Figure 18 and Figure 19. The BCG
biometrics remain the same whether wearing different thicknesses of clothing or placing a 5 cm-thick seat cushion.
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Fig. 19. Signal recovery results under different levels of impulse or continuous noise. The black lines indicate raw acceleration
reading, while the red lines indicate the corresponding recovered BCG biometrics.

The reason is that the BCG signals are caused by the gravity changes of the human body, and the clothing or
padding will not weaken its amplitude or change its morphology. In Figure 19(a)–(c), we can observe that the raw
acceleration readings suffer huge environmental interference. NF-Heart can restore the BCG biometrics well, no
matter suffering impulse or continuous noise. However, the BCG biometrics is totally corrupted and can not be
restored when the system is deployed on the subway. The interference magnitude (as high as 0.2 g) is ten times
larger than other cases (e.g., 0.02 g for the construction site). This indicates that our current solution can not
support CA on transportation. However, the authors in [21] successfully filter the transportation interference
from BCG readings by using a seismic sensor as a noise reference. In the future, we may improve our interference
cancellation ability by introducing extra noise reference sensors into the system and considering a more delicate
algorithm design.

8.3 Privacy Concerns
Cardiac biometrics-based authentication systems bring new privacy threats to users, where the adversary can
infer sensitive health information if they acquire the raw BCG waveform. Therefore, it is important to consider
privacy protection in the authentication protocol. In general, a CA system can be deployed on cloud servers or
edge devices. Several cryptography technologies, such as fuzzy commitment [25], fuzzy extractors [11], and fuzzy
vault schemes [24], can be applied for privacy protection on authentication servers. On the other hand, a large
amount of authentication protocol is proposed to encrypt sensitive health-related data on edge devices before
sending it to cloud servers. Homomorphic encryption [14, 40, 41] can encrypt the biometrics on edge devices and
allows computation on encrypted data to preserve confidentiality during processing on cloud servers. Cancelable
biometrics approaches such as random projection [64], hashing [33], and salting [4] are introduced to solve
privacy concerns for biometrics. Its core idea is to convert the raw biometrics template into a transformed one,
where the adversary can not reverse the transformation process to get the original biometrics. In this paper, we
mainly focus on proposing an advanced biometrics-based CA system while not considering the privacy protocol
at the same time. We would like to incorporate the above-mentioned schemes into NF-Heart in the future.

9 CONCLUSION
Existing cardiac biometrics-based continuous authentication is unsatisfactory in many aspects, leaving much
effort to be done for deploying in the wild. In this paper, we propose NF-Heart to fill the gap of near-field
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non-contact CA using BCG biometrics. NF-heart can serve as a secure protector for organizations with a work-
from-home policy. It can also combine with other schemes to perform multi-factor authentication for remote
workforces. Compared to SOTA ECG or PPG-based CA scheme, NF-Heart does not require wearables or direct
contact with sensor nodes. The fundamental principle of NF-Heart is to extract the unique biometric features
of BCG signals measured from a chair where the user is sitting. The authentication of NF-Heart is unobtrusive,
secure, robust, and user-friendly. The evaluation results validate that NF-Heart can function well under practical
scenarios with arbitrary MAs, respiration effects, HRV, and posture variation.
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A APPENDIX
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Fig. 20. Illustration of the circulatory system, heart structure and cardiac cycle. The reciprocate motion of heart muscle pumps
blood into the circulatory system providing oxygen and nutrients to organs and tissue. To achieve such circulation function, the structure of
human heart is designed as two separate pumps as shown in Figure 20: a right heart pumping blood through the lungs (blue part), and a left
heart pumping blood through the whole body (red part). Both right and left heart contains a upper chamber (i.e., atria) and a lower chamber
(i.e., ventricle). There are atrioventricular (A-V) valves between atrias and ventricles to prevent backflow of blood [5].
The periodic contraction (systole) and relaxation (diastole) of heart can be further illustrated into five major stages[17]: 1) atrial systole (AS),
2) isometric ventricular contraction (IC), 3) ventricular ejection (VE), 4) isometric ventricular relaxation (IR), and 5) ventricular filling (VF). In
the stage of atrial systole (AS), atrial contraction causes a rise in intra-atrial pressure and ejects residue blood into the ventricles. Then
the isometric ventricular contraction (IC) occurs with an abrupt increase of ventricular pressure caused by the contraction of ventricles.
During this stage, the A-V valves and semilunar valves are closed, but the ventricles keep contracting with the ventricular volume unchanged.
The ejection (VE) stage begins when the pressure exceed a threshold and push the semilunar valves open. The blood are continuously
pumped into lungs and aorta during ventricular systole. At the end of ejection, the ventricular diastole (IR) starts suddenly, decreasing the
intra-ventricular pressure in a rapid manner to close the semilunar valves. Then the A-V valves open due to the elevated pressures, and the
large amount of blood accumulate in atria fill into the ventricular (VF).
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Table 3. Illustration of each wave of a BCG signal

Wave
Name Timing Description Wave direction

G The late stage of AS;
Semilunar valves open;

Ventricular systole begins

Atrial contraction causes blood flow to rush down
to the ventricle, generating a footward force; Not
obvious, sometimes disappear

Downward

H During IC
The ventricular muscles contract and the pressure
in the ventricle increases sharply, pushing head-
ward against the A-V valves

Upward

I The onset of VE
A footward retreat of body provoked by the acce-
learation of blood into the pulmonary artery and
the ascending arch of the aorta

Downward

J The peak of blood ejection

After the headward movement of the accelerated
blood, its impact on the crown of the two aorta
arches abruptly reverses the direction of the forces
generating the quick recoil of the body in the head-
ward direction

Upward

K The end of VE
Semilunar valves close

K wave is because of systemic circulation that the
blood flow is declerated by the peripheral resisi-
tance in the descedning aorta, and the ejection
velocity is reduced, resulting in a footward force

Downward

L The onset of IR
A-V valves open

After the closure of semilunar valves, the A-V
valve is then lifted up, and the blood in the atrium
is given a headward power

Upward

M Around the onset of VF

The blood flow rushes from the atrium into the
ventricle and then hits the apex of the heart, gen-
erating footward momentum; A foorward recoil
force in the descending aorta

Downward

N Synchronized with the peak
of rapid filling wave (VF)

The deceleration of venous return causing head-
ward body movement Upward
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