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ABSTRACT 

Meal supervision for post-stroke dysphagia patients significantly im- 
proves prognosis during rehabilitation. Aspiration often occurs dur- 
ing meals, which may further incur aspiration pneumonia. There- 
fore, it’s necessary to know the patient’s swallowing ability as well 
as the occurrence of cough. Recently, some researchers have de- 
tected swallowing or coughing with audio signals and have made 
remarkable achievements. However, the users need to stay in quiet 
environments or wear uncomfortable cervical auscultation devices 
because the signals generated by swallowing are weak. In this work, 
we present MealCoach, a system that utilizes a contact microphone 
to collect high-quality signals to identify the events during meals. 
We take advantage of the insensitivity of contact microphones to 
ambient noise for free-living environment supervision. After bal- 
ancing the wearing experience and identification accuracy, we elab- 
orately select the optimal site to leverage the unique characteristics 
of cricoid cartilage movement during meals to accurately identify 
swallowing, coughing, speaking, and other events during meals. We 
collected data from thirty PSD patients in the hospital and evaluated 
our system, and the results demonstrate that MealCoach achieves a 
mean classification accuracy of 95.4%. 

Index Terms— Post-Stroke Dysphagia, Meal Supervision, Con- 
tact Microphone, Cricoid Cartilage, Deep Learning 

 
1. INTRODUCTION 

 
Stroke is recognized as the third leading cause of severe long-term 
disability globally. One in four people may have a stroke in their 
lifetime. Post-stroke dysphagia (PSD) is a common sequela that 
increases mortality and morbidity due to aspiration and aspiration 
pneumonia [1]. Swallowing requires a series of muscles to work to- 
gether. Due to partial brain damage in stroke patients, they are prone 
to swallowing incorrectly, which can lead to aspiration. Aspiration 
often occurs during meals, which may further incur aspiration pneu- 
monia that causes the highest attributable mortality following stroke 
[2]. Therefore, it is essential to monitor the patient’s swallowing sta- 
tus at mealtime and to identify the onset of coughing, which allows 
for timely intervention by the medical team. When a cough occurs 
after a patient swallows, there is a high probability that aspiration 
has occurred. Accurate identification of each swallow and cough 
can effectively enhance the patient’s recovery. 

Recently, researchers have managed to detect swallowing or 
coughing for dysphagia monitoring.   Olubanjo et al.   proposed    a 
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real-time swallowing detection system with a throat microphone [3]. 
Statistical features were utilized to discriminate swallowing from 
other events. The result is unsatisfactory due to the low signal-to- 
noise ratio (SNR) of swallowing generated sound. To increase SNR, 
Subramani et al. placed cervical auscultation (CA) device on the 
patient’s neck over the lateral border of the trachea to capture the 
acoustic signatures [4, 5]. However, wearing CA devices may cause 
discomfort to PSD patients. Some researchers manage to comple- 
ment the audio with an inertial measurement unit (IMU) to mitigate 
interference from ambient noise. Coughtrigger [6] first detects the 
candidate cough by IMU, then triggers the audio cough detection. 
Coyle et al. integrated a microphone and an IMU as high-resolution 
cervical auscultation (HRCA) devices to detect and analyze the 
swallowing events [7, 8]. However, patients were still required to 
stay in a quiet environment with a neutral head position because the 
IMU signals are sensitive to body motion, which is not applicable 
in the daily scenario. Therefore, HRCA is more useful for bedside 
screening but not for daily dynamic monitoring. 

Contact microphone has been applied for dysphagia in recent 
research [9]. It has the advantages of being insensitive to environ- 
mental noise, low cost, and easy to wear. However, because of the 
low intensity of the swallowing signals, it is easy to overlook them 
among the other vibration signals produced by vocal cord vibration. 
In this work, we combine clinical experience with signal-processing 
techniques to deal with the issue. We propose MealCoach, a contact 
microphone-based four-category classification system to identify the 
swallow, cough, speaking, and other body movements during the 
meals in free-living environments. Detecting these events has signif- 
icant clinical value because a cough immediately after a swallow in- 
dicates aspiration. We observe that the hyoid bone and larynx move- 
ment can be unique characteristic of swallowing, which can help us 
detect swallowing. We analyze the signal quality picked up by the 
contact microphone at various locations around the neck and man- 
age to capture the signals with unique characteristics. We also con- 
sider the wearing convenience and comfort of designing the wear- 
ing method based on clinical experience and patient surveys. We 
choose the optimal site for the contact microphone to be deployed, 
satisfying the signal quality and the patient’s wearing willingness. 
A signal processing and deep learning-based pipeline are designed 
for the classification task. We first filter out the buzzing leaked by 
the improperly shielded capsule, then augment the data by shifting 
and masking. Because Convolutional Neural Networks (CNNs) have 
proven very effective for audio classification tasks [10], we apply 
CNN to identify the non-continuous meal events. We first convert 
the vibration signals to Mel Spectrogram and then feed them into 
the robust ResNet-34 [11] for classification. 

The main contributions of this work are: (1) We propose Meal- 
Coach, a contact microphone-based meal supervision system, which 
is useful for early diagnosis of aspiration.       (2) We  pick the sens- 
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ing modality under the clinical property and needs. We carefully 
select the deployment site of the contact microphone considering 
the patient’s wearing comfort as well as the actual usage   scenario. 
(3) We evaluate MealCoach in PSD patients. We set suitable in- 
clusion/exclusion criteria and prepared specific bolus to ensure the 
reasonable validity of the experiment. The experiments under the 
supervision of medical professionals demonstrate that our system 
achieves high accuracy and robustness, which meets clinical needs. 

 
2. METHODOLOGY 

2.1. Optimal Site Selection 

Selecting a suitable site to attach the contact microphone is of great 
significance as it determines the signal quality as well as the wear- 
ing experience. We expect that wearing the sensor will not cause 
discomfort to the patient, while the sensor can collect sufficiently 
obvious signals. As detecting swallowing is the toughest task, we 
conduct a preliminary study for site selection. After analyzing the 
solution of current state-of-art works and conducting clinical studies, 
we selected four alternative locations, which are shown in Fig. 1(A). 
We  asked patients about their wearing experience,  and conducted  
a preliminary study of signal quality on healthy people for ethical 
reasons. We deploy the contact microphone on each site to pick up 
signals under various behaviors. We further evaluate them theoret- 
ically and experimentally and select the optimal site. We analyze 
the SNR and distribution on the statistical features of the signals, 
including windowed energy (WE), peak frequency (PF), and Shan- 
non entropy (SE) [12]. In order to distinguish swallowing signals 
from signals induced by body movements, we calculate the distance 
between events: 

DIS(s, o) = l2-norm(MMS(WE(s) WE(o)), 
(1) 

MMS(PF (s) − PF (o)), MMS(SE(s) − SE(o))) 

where DIS indicates the distance between two samples, s represents 
swallowing signals and o represents signals of other events. MMS 
is the MinMaxScaler to standardize the feature distance between 0 
and 1. And the distance is measured by l2-norm. 

 

(A) (B) 

 
Fig. 1. (A) Four alternative locations. (B) Contact microphone at- 
tached superior to the cricoid cartilage. 

 
Site 1: Over the lateral border of the trachea inferior to the 
cricoid cartilage. Site 1 was considered the optimal site for throat 
microphones as this site showed the greatest averaged magnitude  
of the SNR with the smallest variance[13], and is used by some 
researches[3, 12]. But we find that the swallowing signals detected 
here are very weak and it is hard for medical professionals to dis- 
tinguish the swallow from other events. In addition, the carotid 
signals here may also influence judgment. The distribution anal- 
ysis of statistical features shows that the swallowing signals are 

 

 Site 1 Site 2 Site 3 Site 4 
SNR(dB) 1.37 1.75 6.18 4.15 
Feature Distance 0.39 0.35 0.51 0.55 

Table 1. Signal qualities of different sites. 
 

individual-specific, making it difficult to distinguish swallowing and 
other events on different subjects. 
Site 2: Two inches on either side of the hyoid bone. Site 2 is 
specially applied for swallow detection, and experiments on multi- 
ple participants show that the swallowing signal strength here is the 
strongest [14]. However, the absolute signal strength is still rela- 
tively weak compared to the sound of a hand sliding across the neck, 
and it is still difficult to distinguish it from other signals induced by 
neck movement. For this site, we find the same problem as Site 1 
that it is hard to cluster the signals by events rather than by subjects. 
Site 3: Superior to the thyroid cartilage. We observe that the hyoid 
bone and larynx movement can be a unique characteristic of swal- 
lowing, and thus detecting this motion can help us detect swallowing. 
Elevation of the thyroid cartilage produces strong and distinctive col- 
lision signals. However, some compensatory actions may also lead 
to slight movement of the thyroid cartilage that may generate strong 
signals, which may be misclassified as a swallow, while a swallow is 
not initialized successfully. What’s more, applying pressure over the 
thyroid cartilage can stimulate swallowing and cause discomfort to 
the patients, thus the position is not suitable for patients with swal- 
lowing disorders. 
Site 4: Inferior to the thyroid cartilage and superior to the 
cricoid cartilage. Similar to Site 3, the upward and downward 
movement of the cricoid cartilage during swallowing will strike the 
central rubber pad of the contact microphone twice, resulting in two 
very distinct signals. The signals here are not as strong as from  
Site 3, However, the unique signal characteristics generated by the 
collision can still be collected. The vibration of the muscles when 
swallowing initiates produces signals, but its strength is significantly 
weaker than the two signals produced by the impact of the cricoid 
cartilage against the rubber pad. Thus, the signals from swallowing 
are clearly distinguishable from the weak signals of muscle move- 
ment and the strong signals from the vibration of the vocal cords 
when coughing or speaking. In addition, placing the microphone 
here will not cause any discomfort to the patient. 

To illustrate the signal qualities among the sites, we shifted the 
swallowing signals collected from the same participant on different 
sites and plot on them on the same figure. In other participants, the 
relationship between these signals is consistent. As shown in Fig. 2, 
the signals near the peak are induced by swallowing. Site 1 and Site 
2 have similar signals, while Site 2 has a higher SNR and stronger 
peak signal. For Site 4, the signals are much stronger, especially the 
characteristic signals induced by cricoid cartilage movement. The 
signals from Site 3 is the enhanced edition of Site 4, but considering 
the comfort of wearing, we give up on it and do not draw it in Fig.  
2 in order not to block other signals . We also compare the SNR  
and feature distance of the signals picked up from different sites,  
as shown in Table 1, and we can find the signals from Site 4 are 
more suitable. Therefore, we choose Site 4, superior to the cricoid 
cartilage, to attach the contact microphone. 

 
2.2. Meal Event Classifier 

To identify the significant events during meals, we build a four- 
category classification model to identify swallow, cough, speaking, 
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Fig. 2. Swallow signals collected from the same participant. 
 

and others that represents possible body movement for meal super- 
vision. Instead of inputting the vibration signals directly, we pre- 
process the signals and convert them to Mel Spectrogram [15], then 
deal with the task with the image classification model. 

Fixed-size sliding windows are created to detect and identify 
events. Based on the clinical observation that the duration of most 

swallowing events of target patients is within two seconds, we seg- 
ment the data into two seconds. As the sample rate is set to 48kHz, 
the shape of the data is (1,96000). After getting the data, we filter 

out the ripple noise with a notch filter. To reduce power consumption 
for long-time monitoring, we identify meal events based on the en- 
ergy of the vibration signals. The threshold is set to half the strength 
of the average PSD patient’s swallowing signals. When the signal 

strength is lower than this threshold, we classify the event as others. 
Once the events are detected, we convert the signals to Mel 

Spectrograms by Short-time Fourier Transform (STFT). We set the 
size of the Fast Fourier Transform (FFT) to 1024, the hop length to 

512, and the number of frequency bands to 64. Thus, we generate 
the Mel Spectrograms shape of (1,64,188).  We  augment  the data 
at the training stage to make the model more robust. We randomly 

shift the window before the data is converted to a spectrogram to 
simulate the inefficiency of the event detection algorithm. Then we 
mask the spectrogram in the time and frequency domains for further 
augmentation. 

Finally, we train a neural network for event classification. We 
choose ResNet [11] because it is mature, robust, and has an excel- 
lent performance in multi-scenario tasks. Other neural network ar- 
chitectures can also be applied with the input Mel Spectrogram [10], 
but we do not find a clear advantage from these networks. Due to 
the limited data size, we fine-tune a pre-trained ResNet, which is 
optimized by Adam optimization. We empirically select ResNet-  
34 because its experimental performance outperforms ResNet-18, 
ResNet-50 and ResNet-101. The performance of the model is de- 
termined by the model’s capacity, the complexity of the task, and the 
amount of data. The workflow is described in Algo 1. 

3. EVALUATION 
 

3.1. Experiment Setup 

Hardware Setup.  We  use CM-01B contact microphone to pick  
up the audio signals. Compared with other contact microphones, 
CM-01B is sized for deployment over the cricoid cartilage and      
is lightweight. The contact microphone collects vibration signals 
through a rubber head, which is attached to the neck right inferior  
to the hyoid bone, and superior to the cricoid cartilage by a sterile 
wound dressing, as shown in Fig. 1(B). The microphone records the 
vibration signals with the sample rate set to 48 kHz. 
Participants and Experimental Protocol. We recruited PSD pa- 
tients to validate the effectiveness of MealCoach.1 The inclusion 
criteria are that PSD patients with a PAS score greater than or equal 
to 4 with a clear diagnosis of overt aspiration/no aspiration by rou- 
tine standardized swallowing angiography. At the same time, pa- 
tients with disturbance of consciousness, tracheotomy, or continuous 
blood oxygen saturation below 95%, or using artificial ventilators to 
assist ventilation, or combined with cognitive impairment, or com- 
bined with head and neck lesions were excluded. 

After screening, thirty PSD patients were selected to participate 
in the experiment (aged 16 to 69, 15 male and 15 female). Evaluated 
by doctors and therapists, all participating patients were in a safe 
recovery phase and were assessed to be able to have eating training. 
To ensure safety, the experiment was conducted in the doctor’s office 
of the inpatient department. The patients were instructed to swallow, 
cough, speak, or have other acts under the supervision of the medical 
team. The experiment would be stopped early when the patient felt 
tired, unwell, or had significant difficulty initiating swallowing. The 
patients were asked to swallow 3 ml water or 3 ml prepared boluses 
whose viscosity was 187 cP measured with a rheometer at 25 °C 
and a speed of 50 s-1. Each patient would swallow between 3 to 18 
times, with a total of 294 swallows collected. For other events, an 
average of twenty actions per patient were performed, with a total of 
approximately 600 data collected for each category. 

We also collected data from twenty healthy volunteers for model 
training (aged 18 to 56). The experiments were conducted in free- 
living conditions full of noise, which simulated the meal environ- 
ment. Participants were asked to swallow, cough, talk, and move 
necks or other body parts. The experiments were recorded and la- 
beled simultaneously by researchers. Fifty samples were collected 
for each individual for each type of event, with a total of 1000 sam- 
ples collected for each type. 

 
3.2. Model Validation 

Our model is evaluated by k-fold cross-validation. As each swal- 
lowing or coughing data by the same person may be similar, we con- 
sider Leave-One-Subject-Out Cross Validation (LOSOCV) to eval- 
uate the generalization ability of the participant-independent model 

   [16], where only the data of the participant being tested will be  left 
Algorithm 1 Meal Event Classifier  
Input: data : a window of two seconds signals 
Output:  Event: an identified event, swallow, cough, speaking, or 

others 
1: data Notch Filter(data, 50Hz, 100Hz) 
2: if Energy(data) < Threshold then 
3: Return Event others 
4:  end if 
5: data ← Mel Spec(data, fft=1024, hop=512, mels=64) 

  6: Return Event ← ReNet-34(data)  

and other subjects’ data are used for model training. 
We evaluate the overall performance of MealCoach by its clas- 

sification accuracy. In addition, as this work focuses much on swal- 
lowing identification, we further evaluate it by recall and precision, 
which measures swallowing detection ability and the chance of get- 
ting false positives. These metrics show how useful the model is in 

reality.  To better express the model’s accuracy, we balance the size 
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 Recall Precision Noisy Env. 
Olubanjo et al. [3] 0.80 0.68 No 
Constantinescu et al. [17] 0.92 0.84 Yes 
Khalifa et al. [18] 0.85 0.84 No 
Nakamura et al. [19] 0.86 0.74 Yes 
MealCoach 0.91 0.95 Yes 

 

Table 2. Comparison with related works. 

 
 
 
 
 

Fig. 3. Confusion matrix of MealCoach on PSD patients. 
 
 

of each class on the test set. In actual scenarios, swallowing occurs 
most frequently, and coughing events occur much less frequently 
than other events. 

 
 

3.3. Evaluation Result 
 

Performance on PSD Patients. We first validated the performance 
of MealCoach in PSD patients. The confusion matrix of classi- 
fication result is plotted in Fig.3, demonstrating that MealCoach 
achieves an average classification accuracy of 95.4%. This result is 
facilitated by the large differences in the signal characteristics of the 
different behaviors during mealtime. During swallowing, laryngeal 
bone uplift and repositioning against the rubber probe produced sig- 
nals in two segments, which is unique enough to get identified. The 
vibration signals induced by coughing are short and strong. As for 
speaking, the produced signals are continuous and strong, which dif- 
fers from coughing signals. In addition, when performing other body 
movements or resting, the contact microphone collected no obvious 
signal but just some noises. Therefore, MealCoach can classify the 
events well in the time-frequency space. 

We analyze the misclassified samples and find that motion ar- 
tifacts caused by compensatory behavior (e.g., swinging the head 
or using hand to support) are evident for some patients, leading to 
the misclassification of swallowing as others or speaking. The rea- 
son may be that PSD patients are hard to initiate swallowing due to 
weak muscles after several swallows, and they tend to perform some 
compensation actions. Therefore, the swallowing movement is par- 
ticularly weak, or the swallowing is not even initiated successfully, 
resulting the misclassification. 
Swallowing Detection.  Swallowing detection is one of our ma-  
jor contributions. In this section, we compared MealCoach with 
other related works. The results in Table 2 show that our work 
achieves 91% recall and 95% precision for swallowing detection, 
which is significantly superior compared to other works. Since the 
contact microphone does not pick up the sound of air pressure re- 
verberating through the airway during swallowing but collects the 
sound of cricoid cartilage hitting the contact microphone directly, 
the signals generated during swallowing have a high SNR. There- 
fore, MealCoach is more robust in noisy environments. Constanti- 
nescu et al. [17] also achieved good performance. However, their 
system is based on sEMG with a more complicated device attached 
to the jaw, and may cause discomfort. 

4. DISCUSSION 

In addition to existing functionalities, in this section, we discuss 
some potential future works for facility improvement. 

 
4.1. Respiration Detection 

Respiratory-swallowing coordination is important for the assessment 
and intervention of swallowing disorders [20]. During our experi- 
ments, we find that when the contact microphone is deployed over 
the cricoid cartilage, a distinct respiratory sound could be heard. In 
future studies, we can combine respiratory-swallowing coordination 
analysis with respiratory-phase recognition algorithms [21] to design 
new clinical interventions. 

 
4.2. Chewing Detection 

Chewing and swallowing information, when combined, are consid- 
ered important features in assessing dietary health. There are much 
research works about chewing detection through various sensors [19, 
22]. Since our sensor deployment site is designed to identify swal- 
lowing, we could not extract significant chewing information from 
the contact microphone. Therefore, in future work, we may consider 
combining other sensors to extract swallowing and chewing signals. 

 
5. CONCLUSION 

In this paper, we present MealCoach, a contact microphone-based 
meal supervision system designated for PSD patients. The user only 
needs to attach the contact microphone to the superior of the cricoid 
cartilage; then the system can automatically identify each swallow, 
cough, and speech when they are eating in a free-living environment. 
Based on the information collected, the medical team can assess the 
user’s status, determine if aspiration has occurred, and update the re- 
habilitation program. The system is widely deployable due to a min- 
imal set-up requirement – a contact microphone. Based on clinical 
observations and experiments, we have selected the optimal site that 
allows us to obtain uniquely characterized swallowing signals with 
strong strength. We use signal processing and deep learning tech- 
niques to make the system robust and can extract features from dif- 
ferent levels. By adapting pre-trained ResNet-34, we can accurately 
identify each swallow and cough in various noisy environments, thus 
contributing a lot to the early identification of aspiration. The exper- 
iments on thirty PSD patients in different courses show that Meal- 
Coach is robust and delivers a high performance of 95.4% classifi- 
cation accuracy. Our experimental analysis also reveals why some 
events are misidentified. We find that in some fatigue-prone PSD pa- 
tients, involuntary compensatory swallowing activity is likely, which 
is likely to increase the risk of aspiration. This finding has important 
clinical value, which can help to continuously assess the patient’s re- 
covery status and help design corresponding rehabilitation methods. 
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