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Abstract—Transforming physical surfaces into virtual inter-
faces can extend the interaction capability of many exciting meta-
verse applications in the future. Recent advances in vibration-
based tap sensing show promise for this vision using passive
vibration signals. However, current approaches based on Time-
Difference-of-Arrival (TDoA) triangulation suffer the impact of
fluctuant wave velocity due to the dispersive and heterogeneous
nature of solid mediums, failing to meet the performance re-
quirement for practical use. In this paper, we present MM-Tap,
a vibration-based tap localization system that can transform
ubiquitous surfaces into virtual touch screens with low overhead.
A novel localization scheme is proposed based on the finding
of spatio-temporal mapping between tap locations and TDoA
values, which pushes the accuracy limits of vibration-based tap
sensing from unstable cm-level to mm-level. We investigate the
geometry of the sensor layout and design a model-based method
to synthesize tap data, which enables MM-Tap to adapt to various
surface materials and respond to arbitrary sensing scales after a
few seconds of calibration. We combine MM-Tap with a COTS
projector and facilitate a digitally augmented surface where users
can play video games with low latency.

Index Terms—Tap Sensing, Vibration-based Sensing, Localiza-
tion, Human-Computer Interaction

I. INTRODUCTION

The emergence of touch screens on electronic devices has
largely improved our daily productivity. However, large-sized
touchscreens incur high production costs and require complex
installation processes, making them impractical for ubiquitous
deployment in the real world. Flat surfaces such as tables,
walls, and floors are abundant in our living spaces. What if we
can convert these physical surfaces into interactive interfaces at
a low cost? This innovation has enabled numerous novel and
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Fig. 1: MM-Tap can localize finger tap on ubiquitous surfaces
with three geophone sensors. sensors.

exciting applications that enhance our daily life experience,
ranging from distributed interactive tables in a meeting room
or a classroom, ubiquitous location-based control panels, to
immersive gaming in the metaverse.

Much research has been developed to sense finger touch
on the physical surface. Vision-based approaches [10]–[13]
are prevalent but require line-of-sight condition and high
computation overhead. Recently, SurfaceVibe [16] utilizes
TDoA triangulation to build a vibration-based sensing system
that supports finger tap and swipe on solid surfaces using
four geophone sensors. However, it can only provide cm-
level accuracy, and the localization error is unacceptable when
enlarging the sensing area. UbiTap [17] proposes a small-scale
tap localization system with mm-level accuracy. It exploits
the acoustic dispersion properties and infers the tap location
based on the TDoA between air-borne and solid-borne sound
signals. However, it requires a delicate position setting of three
smartphones, which harms the usability. In addition, acoustic-
based systems are sensitive to burst noise and fail to work
when enlarging the sensing area.

In this paper, we propose MM-Tap, a vibration-based tap lo-
calization system with mm-level accuracy. As shown in Figure
1, MM-Tap builds upon the analysis of tap-induced vibration
waves collected by three geophone sensors. It can transform
ubiquitous surfaces into digitally augmented surfaces. Unlike
previous work that applies TDoA triangulation for tap local-
ization, MM-Tap proposes an advanced localization scheme
to increase accuracy and stability. The key observation is
that the TDoA values between sensors reflect the spatial
information of finger tap, and we characterize this spatio-
temporal mapping relationship using probabilistic regression
models. MM-Tap can adapt to varying surface material and
scale to arbitrary sensing area size after calibration within
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a few seconds. Compared with the capacitive touch screen,
MM-Tap reduces the cost of transforming a physical plane
into a virtual interface by 10x while having more installation
flexibility.

However, it is non-trial to implement a tap sensing system
with high accuracy, stability, and usability using passive tap-
induced vibration only. First, it is unclear how we can localize
a finger tap with mm-level accuracy. The dispersion effect and
heterogeneity nature of different materials lead to velocity
fluctuation during the propagation of vibration waves. The
state-of-the-art (SOTA) vibration-based sensing systems [16]
mitigate this effect by optimizing a global wave velocity
but can only provide unstable cm-level localization. Second,
since the TDoA triangulation does not meet our precision
requirement, it seems that we have to resort to learning-based
methods for tap localization. However, it is impractical to let
users collect location fingerprints for system initialization at
each re-deployment. How can our system adapt to a new
surface and scale to an arbitrary sensing layout with low
human effort? Third, infrastructure-based localization requires
users to measure the precise coordinate of sensors which
harms the usability and flexibility of tap sensing systems on
ubiquitous surfaces. Is it possible to deploy the system without
measuring the 2D coordinate of sensors on the surface?

To address the above challenges, we first investigate how
the fluctuant wave velocity affects the localization accuracy
of TDoA triangulation and find that a mere time delay pattern
between sensors can still reveal spatial information of tap
location, even if we ignore the velocity parameter. We design
a two-stage time delay estimator to obtain precise TDoA
values. In order to project the measured TDoA values into
the coordinate of the tap location, we employ a probabilistic
regression model based on the linearity characteristics of the
TDoA pattern. To avoid collecting a large number of location
fingerprints for training, we design a synthetic data generator
based on the observation of data structure. The users only
need to tap on a few calibration points within seconds for
initialization. In addition, a non-Euclidean distance metric is
defined to release the burden of measuring sensor layout.
Under this new distance metric, we can exploit the geometrical
relationship between sensor intervals and sensing area and
form a new deployment scheme that users no longer need to
measure the exact coordinate of ambient sensors.

We evaluate MM-Tap across three types of common surface
materials and four settings of sensing scales. For an 80 cm ×
80 cm sensing area, MM-Tap can achieve median localization
errors of 0.9 mm, 2.9 mm, and 3.6 mm for glass, acrylic, and
wooden board, respectively. The experiment results show that
our proposed methods enable MM-Tap to quickly adapt to new
environments and various sensing scales without sacrificing
accuracy and usability. Combining MM-Tap with a COTS
projector, a digitally augmented surface is created on a real-
world table for the user study, which shows that users can
play exciting 3D shooting games with low latency (Demo:
https://youtu.be/nQBnXOpntsc).

The main contributions of MM-Tap are summarized as
follows:
• We propose MM-Tap to transform ubiquitous physical
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Fig. 2: The simulated localization errors of TDoA triangulation
under different velocity fluctuation ranges.

surfaces into interactive surfaces. We push the limits of
vibration-based tap sensing on solid surfaces. The interac-
tion powered by MM-Tap can achieve mm-level accuracy
with low latency.

• We investigate the properties of solid-borne vibration signals
and propose a new localization scheme for tap sensing.
Our localization scheme relieves the pain of measuring the
exact coordinates of ambient sensors. We design a two-stage
time delay estimation method to improve the measurement
accuracy and stability of TDoA values.

• We establish a model-based synthetic data generator that
successfully synthesizes sufficient training data to support
the regression-based localization. The regression model can
be arbitrarily calibrated for a new environment and new
sensing scale with extremely low effort.

• We conduct extensive experiments to validate the accuracy,
adaptability, and generalizability of MM-Tap. In addition,
we prototype a low-cost interactive projector using MM-Tap
and conduct a real-world user study to prove its usability.

II. PRELIMINARY

A. TDoA Error Analysis

TDoA triangulation has been widely used for localization
[19]–[24], [32]. Suppose ∆tij is the TDoA value measured
between the i-th and the j-th sensor (i = {1,2,3}, j = i % 3 +
1), we can derive the distance difference as

∆rij = ri − rj = vg ·∆tij , (1)

where vg is the global wave velocity. The intersections of three
hyperbolas indicated by Eq (1) are possible target locations.

However, TDoA-based systems can not provide stable and
fine-grained results when localizing the passive vibration
source (e.g., tap on a surface). The reason is that previous
work assumes the wave propagation velocity on the surface
is consistent while it is not [16]. The surface structure is
heterogeneous even if made in the same material with an
ideal craft process. The heterogeneous nature of the propa-
gation medium leads to inconsistent wave velocity at different
locations [51], [52]. If we set a global velocity for TDoA
localization, then errors will be introduced when solving the
above TDoA equations.

We measure the wave velocity (m/s) of different touchpoints
on three types of boards, including toughened glass, acrylic

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3284404

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 15,2023 at 11:58:33 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, SEPTEMBER 2023 3

and , wood. These boards have the same dimension of 120
cm × 120 cm × 1.5 cm. The velocity fluctuation ranges
(VFR) of glass, acrylic, and wood boards fall in the range of
[108, 171], [57,137], and [141, 269], respectively. In order to
better understand the impact of fluctuant velocity, we conduct
a simulation experiment. We consider a solid surface with a
size of 100 cm × 100 cm. The solid-borne vibration wave
propagates at different velocities in the range from 50 to 300
m/s [16], [25]. We evenly distribute 100 locations on the
surface and assign a random velocity v ∈ [vmin, vmax] for
each location. The degree of velocity fluctuation is controlled
by simultaneously increasing vmin and decreasing vmax with
a step size of 10 m/s. The measurement of TDoA values
for each location is assumed to be perfect and calculated
based on the ground truth coordinate and the assigned velocity.
Therefore, the only influence factor will be the setting of
vg = (vmin + vmax)/2 when solving TDoA equations.
The Chan algorithm [23] is used to find the solutions (i.e.,
intersections).

Figure 2 shows the simulation results regarding different
velocity fluctuation ranges (VFR). The average localization
error is 16.89 cm when VFR = 250 m/s, and the error decreases
to 0.60 cm when VFR = 10 m/s. In the real world, the
fluctuation may not be as high as 250 m/s. Previous work
[16] reports localization errors ranging from 5.1 cm to 18.4
cm under a comparable surface size, which is consistent with
our simulation.

Summary of observation 1: Due to the heterogeneous
nature of solid mediums, wave velocity becomes an error term
when using TDoA triangulation. We need to eliminate the
velocity parameter to improve localization accuracy.

B. Spatio-temporal Mapping

If the wave velocity is not applicable, TDoA triangulation
cannot be used to solve the target coordinates. But what if
we only consider the TDoA values as the location hint? We
conduct an experiment in the real world and measure TDoA
values from 25 touchpoints (i.e., the blue area in Figure
4(a)) on a glass surface. Each point is tapped five times,
and the corresponding TDoA values are plotted in Figure 3.
Interestingly, we observe that the TDoA values have a linear
relationship with the locations (e.g., the row with location
index from 1 to 5). We further depict the 2D scatter map
of TDoA value pairs at the same location in Figure 4(b). The
scatter point forms an irregular quadrilateral using the sensor
layout in Figure 4(a).

Summary of observation 2: It seems like mere TDoA
values can provide special insight about tap locations. But the
challenge is how we can model the spatio-temporal mapping
relationship between tap coordinates and TDoA values while
generalizing to different surface materials and sensing scales
with low user effort.

III. SYSTEM OVERVIEW

A. Design Goals and Challenges

MM-Tap is designed to meet the following goals.
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Fig. 3: The measured TDoA values of 25 locations on a glass
broad show a linear pattern.
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Fig. 4: The spatio-temporal relationship between tap locations
and their corresponding TDoA values.

Fine-grained: The motivation of MM-Tap is to provide
fine-grained tap localization at any physical surface. The
localization accuracy of current vibration-based approaches
does not fulfill the needs of practical use. We aim to push the
limits of tap sensing accuracy from unstable cm-level to stable
mm-level. However, as shown in our preliminary study, the
traditional TDoA-based localization scheme is not applicable.
We need to propose a new localization scheme.

Adaptive and scalable: Classification-based tap localiza-
tion systems rely on collecting samples at pre-defined points.
The trained model will fail to work when moving the system
to a new environment. In addition, a user-friendly interaction
system should not put too much burden on users to re-train
the system. It is non-trivial to find an appropriate adaptation
scheme when the system is deployed on a new surface or
scaled to an arbitrary size of sensing area.

Easy to deploy: Infrastructure-based tap localization sys-
tems require a delicate setting of ambient sensors. To guarantee
localization accuracy, users have to measure the distance be-
tween sensors. We want to release this restriction and support
quick and easy deployment even if users do not know the exact
coordinate of ambient sensors.
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Fig. 5: System overview of MM-Tap.

Low-latency: Last but not least, we should give tap feed-
back to the user without noticeable latency (¡100 ms [50]).
This indicates that we need to achieve the above-mentioned
design goals while not adopting complex algorithms that may
increase the interaction latency.

B. System Workflow

Figure 5 shows the system architecture of MM-Tap, which
comprises three main modules to enable an adaptive, scalable,
and fine-grained tap sensing system using passive vibration
signals.

Signal Processing: The signal processing module takes
charge of detecting tap-induced vibration signals across sensor
channels. A wavelet-based filter is designed to combat the
dispersive and reflective nature of solid mediums, extracting
the direct path waveform with L-infinity norm.

Two-stage Time Delay Estimator: Measuring the accurate
time delay of directly arriving signals is critical for tap sensing
with mm-level accuracy in this paper. We propose a two-
stage time delay estimation scheme that can extract more
precise TDoA values than previous work. The first stage is
a coarse picking of tap-induced vibration signals with the
Akaike Information Criterion (AIC). AIC can also provide
prior knowledge, that is, the signal arriving order at sensors. In
the second stage, we adopt an effective trick that selects partial
signals for calculating cross-correlation coefficients. With the
help of prior knowledge in the first stage, we can further
exclude the false choice of time delay and get a more accurate
estimation of TDoA values in the end.

Coordinate Predictor: Since the model-based localization
algorithm (i.e., TDoA triangulation) is not applicable. We
treat the problem as coordinate regression using the obtained
TDoA features. It is impossible to ask users to collect training
samples by tapping all the target locations before using them.
In addition, the regression model should also be able to adapt
to different surface materials and sensing scales. We address
these challenges by proposing a model-based synthetic data
generator, which can characterize the TDoA pattern of the
whole sensing area with extremely low human effort. Then,
the synthetic TDoA data is fed into two Gaussian process
regression models for training. Finally, given the TDoA mea-
surement from any tap location, the system can predict its 2D
coordinate with mm-level accuracy.

IV. MM-TAP SYSTEM

A. Signal Processing

1) Tap Detection: The vibration wave caused by finger tap
is dominated by Rayleigh waves (decaying ∝ distance1/2)
which have a slower velocity, lower frequency but stronger
power compared to other mechanical waves like P- and S-
waves [27]. Three geophone sensors are deployed to capture
tap-induced vibration since they are more sensitive to the
wave we collect. The tap-induced vibration has a pulse-like
waveform, and we can apply an energy-based sliding window
algorithm [15] to get the segment efficiently. The segment
length is set to be 2000 sample points, which is long enough
to cover the useful vibration signals. We denote the segmented
vibration signals of the i-th channel as xi(t).

2) Wavelet-based Denoising: The tap-induced vibration
signals are nonlinear and non-stationary time-series. Wavelet-
based decomposition is well suited for denoising such signals
[29]–[31]. In order to obtain high resolution in both time and
frequency domains, we utilize continuous wavelet transform
(CWT) [28] to decompose the tap-induced vibration signals.
Specifically, CWT can be expressed as:

CWTxi
(α, τ ; Ψ) =

1√
α

∫ +∞

−∞
xi(t)Ψ(

t− τ

α
)dt (2)

where Ψ(t) is the wavelet base function with scaling factor α
that controls the width of the wavelet and translation parameter
τ that controls its time location.

We select the Ricker wavelet as the wavelet base function
because it is frequently used to model seismic data (i.e.,
vibration signals) [33], [34], [36]. Figure 6 shows an example
of tap-induced vibration signals and their CWT spectrum. For
each channel, we will select one scale with the highest energy
out of 50 scales. The index of the selected scale may be
different for each channel. Then we will share the indexes
across all channels for signal reconstruction. Instead of using
L2 norm to calculate the energy as usual, we use L-infinity
norm in this paper. The reason is that L2 norm sums up
across the whole time-series and will incorporate the energy
of undesired reflected paths that appear in the latter part of
the signals. Therefore, we can increase the TDoA estimation
accuracy of the direct path by using L-infinity norm instead.
The third column in Figure 6 shows the vibration signals
after CWT filtering. We can see that the clutter level of
reconstructed signals is lower.
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Fig. 6: The raw signals of the three channels are reconstructed
using CWT.

B. Two-stage Time Delay Estimator

We design a two-stage time delay estimator that can more
precisely estimate the TDoA values between sensors. First, we
estimate the coarse-grained arrival time of the vibration signal
using AIC. This step denotes a onset point of the signals and
determines the signal arrival order at each sensor. The arriving
orders at each sensor are essential prior knowledge that can
improve localization accuracy. Second, we extract the partial
signals (including the first two peaks) for cross-correlation
to mitigate the multi-path effect. With the prior knowledge
obtained in the first step, we can select the optimal correlation
coefficient corresponding to the correct time delay.

1) Coarse Estimation with AR-AIC: The segmented vibra-
tion signals comprise two intervals. One is the ambient noise,
and the other is the tap-induced vibration. We can express
the segmented signals of the i-th channel as an autoregressive
(AR) model.

xi(t) =

M∑
m=1

aj(m)xi(t−m)+εj(t) (3)

where M is the order of an AR process fitting the data,
aj(m) are constant coefficients of the j-th interval, and εj(t) is
stationary white noise with zero mean and variance σ2

j . Given
the segment length N, we have t ∈ [1,M ] for interval 1 and
t ∈ [N −M + 1, N ] for interval 2.

Our target is to detect the exact onset time of interval 2
so that we can get a more fine-grained time delay estimation.
To this end, we can calculate the Akaike information criterion
(AIC) [37], which is represented as:

AIC(t) = (t−M) log(σ2
1,max)+(N−M−t) log(σ2

2,max) (4)

The global minimum of the AIC curve indicates the onset
point of interval 2. Figure 7 shows an example AIC curve of
a segment and the onset point we find. In order to calculate the
AIC efficiently, the Maeda method [38] is applied. However,
the onset point is not evident, and the detection is inaccurate
when the signal-to-noise ratio (SNR) is low (e.g., the tap
position is far away from one of the sensors). Therefore, AIC
can only provide a coarse estimation of the onset point, but
this prior knowledge is helpful for the final estimation in the
next stage.
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Fig. 7: A sample AIC curve. The minimum of AIC indicates
the onset of tap-induced vibration.

2) PCC with Prior Knowledge: It is typical to calculate
the cross-correlation between signals of two channels for time
delay estimation [39], [40]. However, tap-induced vibration
signals suffer reflection and refraction inside the surface. As
shown in Figure 8, the latter part of the waveform com-
promises the influence of multipath and has a high clutter
level, which makes the time delay estimation drift a lot. To
avoid such influence, we only consider the initial periods
(i.e., sample index from around 500 to 700 in Figure 8) for
cross-correlation calculation. Specifically, the onset point is
detected by AIC, and we set the endpoint at the second peak
of the signals. Figure 8 shows the cross-correlation coefficients
calculated between two extracted partial signals. Generally, the
time delay is determined as the offsets corresponding to the
maximum coefficients. However, this is sometimes not the case
in practice. The maximum coefficient Nmax in Figure 8 indi-
cates a negative offset of -91. In fact, the positive offset of 23
(i.e., shift signals of geophone 2 toward the positive direction
for 23 sample points) gives the correct time delay estimation
when calculating the cross-correlation xcorr(Geo 1, Geo 2)
[41], because we know that the ground truth location of the
touchpoint is closer to geophone 2. Actually, we can leverage
the prior knowledge (i.e., the arriving order of tap signals
at each sensor) obtained by AIC to eliminate this estimation
error. The prior knowledge can help decide which peak in
the cross-correlation coefficient curve is the correct one and
avoid the localization with large errors due to inaccurate time
delay estimation. The effectiveness of partial cross-correlation
(PCC) with prior knowledge will be evaluated in Section V.

C. Synthetic Data Generation

Let us assume that there is a mechanical wave propagating
in a straight line, and it propagates through two geophone
sensors G1 and G2 one after the other at time T1 and T2,
respectively. If we ignore the velocity parameter by setting it
as 1, then we can define a new distance metric called time-
difference distance (TDD) to characterize the distance between
sensors. For example, the distance between G1 and G2 will
be T1 − T2 TDD. TDD is measured by the time difference,
and its physical meaning is the time it takes for a mechanical
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Fig. 8: Illustration of partial cross-correlation with prior
knowledge. The dotted lines denote the partial signals used
for cross-correlation.

wave to pass through two points on a straight line at a unit
velocity. In this section, we set TDD as the default distance
metric.

We now assume that there are three geophones G1, G2, and
G3. The distances between every two geophones are a and b,
as shown in Figure 9(a). We now find any point M on the line
G1G2, and tap at that point. The three geophones will receive
the vibration signal and can calculate the time difference of
arrival. We can set the distance between M and G1 as x1. The
TDoA value measured at G1 and G2 can be expressed as:

TDoAM12
= TM1

− TM2
= x1 − (a− x1) = 2x1 − a (5)

The TDoA value measured at G1 and G3 is TDoAM13 =
x1− |MG3|. Therefore, we have |MG3| = |x1−TDoAM13

|.
According to the Pythagorean theorem, we have:

x2
1 + b2 = (x1 − TDoAM13

)2 (6)

We can find another point N on the line G1G3 to tap and set
the distance between N and G1 as x2. Similarly, we can get
another two equations:

TDoAN13
= TN1

− TN3
= x2 − (b− x2) = 2x2 − b (7)

x2
2 + a2 = (x2 − TDoAN12)

2 (8)

Solving Eq (5)-(8), we can know the length of a and b in
TDD.

The next step is to determine the sensing area size, as shown
in Figure 9(b). The solution is to find a third point A on the
line G2G3, and we denote the distance between A and G1

as x3 TDD. Then we have |AG2| = |x3 − TDoAA12
| and

|AG3| = |x3 − TDoAA13 |. Based on Pythagorean theorem,
we can get:

a2 + b2 = [(x3 − TDoAA12) + (x3 − TDoAA13)]
2 (9)

Leveraging the similar triangle theorem, we can get the
distance d from the point A to the line G1G2 by:

d

b
=

x3 − TDoAA12

(x3 − TDoAA12
) + (x3 − TDoAA13

)
(10)
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CD Sensing Area

d

(b) Sensing Area

Fig. 9: MM-Tap exploits a geometrical model to synthesize
data with a few calibration points.

Fig. 10: A comparison between synthetic TDoA values and
ground truth measurements from 25 locations on an acrylic
board.

Ultimately, we can infer the width and length of sensing
area as |AD| = b − 2d and |AB| = a

b (b − 2d), respec-
tively. Taking G1 as the origin, the coordinate of point A
is (−(x2

3 − d2)1/2,−d), which can be estimated using the
actual measurement of TDoA values. Then, we can synthesize
the TDoA values of any location in the sensing area and
learn a regression model to predict the tap location. However,
synthesizing data in this way can not provide a satisfactory
localization performance. This is because the pattern of the
synthetic data with TDoA measurement from only one point
A is a regular quadrangle, which is contradicted to the irregular
quadrilateral pattern of ground truth measurement using three
geophone sensors (see Figure 4(b)). We need to refine our
method further.

Actually, we need at least four vertices to pinpoint the irreg-
ular quadrilateral. Since the sensor intervals a and b is known,
let us assume the coordinates of the vertices of sensing area
are A(xa, ya), B(xb, yb), C(xc, yc), D(xd, yd), which can be
obtained by solving Chan equations [23] without considering
velocity. The coordinates of the remaining locations in the
sensing area can be inferred based on these four vertices.
Assuming that the A⃗D is divided into n − 1 segments and
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Fig. 11: (a) The setting of surface layout, where B=120 cm is the board size, S=100 cm is the sensor intervals, and A is
the sensing area size. The red and black dots denote geophone sensor locations and 25 tap locations, respectively. (b) The
experiment setup of MM-Tap prototype under different A in the real world.

a total of n points, then for the i-th equal division point Ki
AD,

we have ⃗AKi
AD = i

n−1 A⃗D. Therefore, the coordinate of the
i-th point on A⃗D is Ki

AD = i
n−1 (D−A) +A, i ∈ [0, n− 1].

More generally, the coordinate of the point in the i-th row and
the j-th column is:

Xij =
j

m− 1
(Ki

BC −Ki
AD) +Ki

AD, j ∈ [0,m− 1] (11)

Figure 10 shows the synthetic TDoA values of 5 × 5
points using the samples from 6 calibration points, which
matches the ground truth measurement well. In practical
use, vertices of the sensing area can be easily indicated
for users on a projected interface. The mathematical theory
builds upon the Pythagorean theorem, but our system does
not require a perfectly orthogonal layout in practice (see
validation in Section V). Note that the proposed synthetic
data generation model is applicable when the number of the
sensor is 3. Without introducing extra human effort, a fourth
sensor does not provide additional information and will not
improve localization accuracy. Therefore, we only investigate
the case using three sensors in compliance with our design
goals. In summary, with our method, users no longer need
to measure the sensor intervals to get the exact coordinate of
ambient sensors when deploying the tap sensing system. A
large amount of synthetic data can be generated within a few
seconds, supporting rapid adaptation to new environments and
sensing scales. Actually, we generate 15 synthetic samples for
each location. Gaussian noise with a mean value of 0 and
standard deviation of 10−5 is added to the synthetic data for
better generalization.

D. Tap Localization

With sufficient synthetic TDoA data, we can learn the
spatio-temporal mapping relationship of the whole surface

sensing area using the regression model. In this paper, we
adopt Gaussian process regression (GPR) [43] as our learning
model. GPR has been successfully applied in fingerprint-based
indoor localization systems using received signal strength
indicator (RSSI) [?], [44], [45]. It is a non-parametric model
that does not build upon the discrete representation of space
and is able to represent arbitrary probabilistic models. The
three-channel synthetic TDoA data is used to train the GPR
model with the linear basic function and the rational quadratic
kernel. The model is optimized with the Bayesian optimization
scheme and iterated for 30 epochs. Two GPR models are
trained to predict the tap location’s x-axis and y-axis coor-
dinates, respectively.

V. EVALUATION

A. Implementation

Three geophone sensors (LCT-20D100) are used to detect
tap-induced vibration on the surface. The three-channel analog
signals are then amplified by three amplifiers (BOB-09816),
respectively. A 10-bit 8-channel analog-to-digital converter
(MCP3008) is used for digitizing the analog signals. The
above-mentioned components are connected to a daughter-
board, which can directly plug into a Raspberry Pi 3B. We
configure the sampling rate as 30 kHz using the BCM2832
library in C. The real-time vibration signals are transmitted to
a laptop (Dell G7 7588-R1745) for further processing in the
MATLAB platform. An interactive projector is implemented
by connecting a COTS projector (XGIMI XK03E) to the
laptop. The projected surface is completely overlapped with
the sensing area supported by MM-Tap. We conduct a user
study and ask volunteers to play video games using this
interactive projector.
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Fig. 12: Localization errors across different sensing scales on three different types of surfaces.

B. Experimental Setup

Without loss of generality, we prepare three different surface
materials for evaluation, including toughened glass, acrylic,
and wood1. These surfaces have the same dimension of 120
cm × 120 cm × 1.5 cm. The layout setting is shown in
Figure 11. Three geophone sensors are fixed on the corner
of the surface to cover an area of 100 cm × 100 cm. For
an effective sensing area, we arrange the sensing area size A
from 20 cm to 80 cm with a step size of 20 cm. We uniformly
distribute 25 touchpoints on the effective sensing area where
each touchpoint is separated by D = A/4 cm on both the
x-axis and y-axis. For a specific sensing area on a surface, we
use the fingertip to tap on each touchpoint 10 times. Then, we
form a main dataset with 3× 4× 25× 10 = 3000 tap samples
in total.

To study the impact of other factors (e.g., tap tool material,
etc.), we collect other sub-datasets with a default setting where
only acrylic surface is considered and A = 60 cm. We will
specify more about the setup details in the corresponding
experiments.

C. Accuracy

1) Over performance: We first demonstrate the overall
localization errors of MM-Tap across three types of surfaces
and four sensing area sizes. Figure 13 shows the CDF of
localization errors, which reveals following findings:

(1) Overall, we can see that the 80th percentile localization
errors fall within 1 cm, which indicates that MM-Tap can
facilitate mm-level tap sensing on ubiquitous surfaces.

(2) For different sizes of sensing area, we can observe
that the tap in the center (e.g., A = 20 cm) has a better
localization performance. This is because the distance between
the touchpoints and sensors is relatively similar, and the signal
quality is high (i.e., much less attenuation and dispersion)
for all channels. With the increase of the sensing area, the
localization errors slightly increase.

(3) For different surface materials, the wooden surface
shows more fluctuating localization errors under different sizes

1We measure the wave velocity (m/s) of different points on our boards,
where V FRglass ∈ [108, 171], V FRacrylic ∈ [57, 137], V FRwood ∈
[141, 269].

of sensing area. The primary reason is that the vibration
wave in the wooden board has a higher velocity and velocity
fluctuation range.

(4) For the best case (A = 20 cm), the 90th percentile
localization errors are 2.09 mm, 3.59 mm, amd 1.96 mm for
glass, acrylic, and wooden surface, respectively. For the worst
case (A = 80 cm), the 90th percentile localization error is
1.30 cm, 1.60 cm, and 2.3 cm for glass, acrylic, and wooden
surfaces, respectively.

2) Comparison: We also compare MM-Tap with two base-
lines. The Fingerprints baseline is evaluated using leave-six-
out cross-validation. The SurfaceVibe baseline is the SOTA
vibration-based tap sensing system. Figure 13 plots the lo-
calization errors by taking all the test samples in different
sensing area sizes into consideration. We can see that the
Fingerprints baseline provides the best performance, but the
tedious data collection process is infeasible in the actual ap-
plication. Overall, MM-Tap outperforms the SOTA vibration-
based tap sensing system and provides much more accurate
and stable localization results.

3) Effectiveness of Time Delay Estimator: In this experi-
ment, we evaluate the proposed modification for estimating
time delay discussed in Section IV-B. Figure 14 compares the
median localization errors using three different methods for
time delay estimation. We can observe that calculating cross-
correlation across the whole time-series (i.e., Corr) yields
the worst performance. The errors further increase with the
increase of sensing area size, where the multipath effect has
more impact on the signal waveform. This effect is mitigated
by only considering the front part of the segment (i.e., PCC).
We can see a further improvement when leveraging the prior
knowledge obtained by AIC (i.e., PCC w/ PK), which vali-
dates our method’s effectiveness for fine-grained time delay
estimation.

D. Adaptability and Scalability

1) Localization across Different Surfaces: One of the de-
sign goals of MM-Tap is to guarantee the adaptation on
ubiquitous surfaces. In this section, we first investigate how the
environment changes (i.e., different surface materials) impact
the system performance. For example, we use the samples
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collected from one surface material to test the regression mod-
els trained on another surface material. As shown in Figure
15(a), the trained regression models yield unacceptable median
localization errors over 9 cm when testing with samples from
unseen environments. This indicates that the synthetic data can
not generalize across all the surface materials, and we need
to calibrate the model. Figure 15(b) shows how the system
performance is recovered with a different number of samples
from each calibration point. With one tap at each calibration
point, the median localization errors can recover to below 6
mm across all surfaces.

2) Localization across Different Scales: We also want MM-
Tap to be responsive for different sizes of sensing area.
Similar to the previous experiment, Figure 16 shows how the
scale changes impact the system performance. Again, MM-
Tap fails to work across different scales, but the system can
quickly adapt and recover to a standard performance after the
calibration. Interestingly, using more samples for calibration
is not necessary for higher localization accuracy. In practical
use, users can scale the interactive interface to an arbitrary
size by tapping each calibration point one time only.

E. Generalizability

1) Impact of sensor displacement: One of the key features
of MM-Tap is that users do not need to measure the exact
coordinate of ambient sensors. Without the restriction of
sensor deployment, users may introduce errors in calculating
synthetic data. To simulate the human error, we keep sensor
G1 still and shift sensor G2 and G3 along the line G2G3

simultaneously. Both sensors are shifted inwards to the board
center and outwards to the board edge for 8 cm with a step
size of 2 cm. Figure 17 shows the localization performance
when shifting sensors to different levels. The results validate
that MM-Tap is resilient to around 8 cm sensor displacement,
having a high fault tolerance to sensor deployment.

2) Impact of Tap Strength: In this experiment, we in-
vestigate how tap strength will affect the system perfor-
mance. Specifically, we consider two different strength levels–
”heavy” and ”gentle.” The average SNR of vibration signals
collected with heavy tap strength is considerably higher than
that of gentle ones. Figure 18 shows the localization error
when applying different tap strengths. It is obvious that the
system performance suffers no degradation. The reason is that
the variation of signal pattern due to different tap strength
levels is not an influence factor for extracting exact TDoA
values.

3) Impact of Tap Materials: In practice, users may utilize
different tap tools when interacting with the touchscreen. In
this experiment, we iterate six kinds of tap tools for interaction,
including the fingertip, the fingernail, an eraser, an iron pen,
a plastic marker pen, and a wooden pencil. As shown in
Figure 19, MM-Tap maintains stable and high localization
accuracy for most of the tap materials compared to the baseline
(fingertip). However, we can see that MM-Tap has high errors
sometimes when using an iron pen as the tap tool. We
analyze the iron pen-induced vibration signals and find that the
frequency band is much broader than others. The dispersion
effect degrades the estimation accuracy of TDoA values.

4) Impact of Surrounding Objects: In this experiment, we
simulate the practical scenario where the objects exist nearby
the surface. Specifically, we consider three kinds of objects
with different sizes and weights (e.g., A 1.3kg 13-inch laptop,
a 194g 6.81-inch smartphone, and a 2kg A4 book). We divide
the surface into three areas (i.e., blue, orange, and green
areas in Figure 11(a)) to indicate different influence levels.
Three objects are randomly placed in different locations of
the corresponding area. Figure 20 compares the localization
errors with or without objects placed on the surface. MM-
Tap shows high robustness against the environmental changes
above surfaces. Unlike classification-based localization system
[14], [15] that relies on a stable signal pattern of each location,
MM-Tap can still extract fine-grained TDoA values of directly
arriving path even if the pattern is changed.

5) Impact of Ambient Noise: We consider the impact of
two types of ambient noise, namely, air-borne and solid-borne
noise. A Xiaomi smart speaker Pro is placed one meter away
on the other table to generate air-borne noise. The solid-borne
noise is generated by placing the speaker at the corner that has
no sensor. A Happy Birthday song is played when collecting
data. We measure the sound pressure level at the speaker using
a sound meter (AR844). The sound pressure level ranges from
60 dB to 100 dB with a step size of 10 dB. Figure 21 shows
that MM-Tap is resilient to both air-borne and solid-borne
noise.
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Fig. 15: Localization errors across different surfaces, where ”G” for glass, ”A” for acrylic, and ”W” for wood.
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F. User Study

An anonymous demo showing our user study’s game appli-
cations is available at: https://youtu.be/nQBnXOpntsc.

1) User Study Setup: We recruit ten volunteers (2 of
them are female) from our university for the user study. The
user study contains four sessions, including two sessions of
normative tests by tapping randomly generated points and two
sessions of playing video games. A projector and three geo-
phone sensors are used to create a 20-inch digitally augmented
interface on a wooden table. A 10-inch tablet (Surface Go) is
used as a baseline for comparing MM-Tap with a capacitive
touchscreen. Volunteers are asked to alternately use MM-Tap
and touchscreen to play 10 rounds of each game. During the
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Fig. 18: Impact of tap strength (”H” indicates ”heavy”, while
”G” indicates ”gentle).
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Fig. 19: Impact of different tap materials.

user study, a camera is on to record every interactive operation.
2) Normative Test: Tapping Random Points: We conduct

this experiment under two calibration settings: self-calibration
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and calibration by others. For self-calibration, the volunteers
are taught to set up the MM-Tap system by themselves. For the
other session, the instructor will calibrate the system before
volunteers use it. For each session, a circle with a diameter
of 1 cm will randomly pop up on the interface 300 times.
The volunteers are asked to tap this projected circle. Overall,
the average time used for self-calibration is 10.5 s. Figure
22 shows the localization errors of each volunteer. All the
volunteers can achieve mm-level tap localization accuracy
using MM-Tap when calibrating the system by themselves.
However, some of the volunteers (e.g., V2, V3, V7, and
V10) yield unstable localization results when using the system
calibrated by others. But still, the median localization errors
fall within 1 cm for these four volunteers. We also counted the
miss detection rate and false alarm rate during this normative
test in Table I, which shows a high detection accuracy of MM-
Tap.

3) Game 1: Whack a Mole: Whack a Mole [49] is a well-
known tap-based game, which requires players to tap the
randomly pop-up moles within a certain time for scoring. In
this study, we ask volunteers to play Whack a Mole for one
minute per round, and each effective hit accounts for one score.
Figure 23(a) shows the average scores for each volunteer. Most
of the volunteers can get comparable scores when using both
interaction methods. Due to the larger interface, they feel it
will be easier to score a hit on MM-Tap. However, we notice
that some of the volunteers (e.g., V6, V7, and V8) have much
lower scores when using MM-Tap. They report that moles have

TABLE I: The detection accuracy of MM-Tap.

Item Self-Cali. Cali. by others

Miss Detection Rate(%) 3.06% 2.60%
False Alarm Rate(%) 0% 0%
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Fig. 22: The localization errors with respect to two calibration
settings.
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Fig. 23: Comparison of user scores between MM-Tap and the
capacitive touchscreen.

a short existence time, and the screen is too large to respond
sometimes, and many hits were missed.

4) Game 2: Smash Hit: Smash Hit [42] is a 3D shooting
game involving an increasingly-moving view through a pas-
sageway. The players need to tap the screen to aim and shoot
limited metal balls to smash the crystals or obstacles to get
bonus balls for surviving a longer time. If a player does not
smash the obstacles encountered in time, he will lose some
balls and die when the ball pool is empty. In this study, we ask
volunteers to play as long as they can. Figure 23(b) presents
the travel distance given by the game when each player dies.
Overall, the score of playing Smash Hit on MM-Tap will be
slightly lower than that of using the touchscreen. Volunteers
report that the latency of MM-Tap is a little bit higher and
more unstable than that of capacitive touchscreen, and the
predictive aiming for shooting is more challenging when the
moving speed of view is faster in the later period of the game.
For each tap, MM-Tap shows an average calculation latency
of 82.9 ms with a standard deviation of 28.7 ms inside the
MATLAB. We notice a large transmission latency from the
laptop to the projector in our run-time demo, and we believe
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the latency can be much lower with a better design of the
prototype in the future.

VI. DISCUSSION

A. Finger Swipe Tracking

Previous work [16] tracks the swipe trajectory by continu-
ously localizing finger location using multiple signal segments
within a swipe process. The swipe-induced vibration wave is
dominated by body waves whose attenuation is proportional
to the propagation distance. Therefore, it has a lower signal-
noise ratio when reaching the sensor compared to tap-induced
vibration waves. The swipe-induced is hard to detect for a
large-scale tap sensing system like MM-Tap. In addition, the
latency will be unacceptably high due to the computation of
continuous localization. A new tracking method needs to be
proposed in the future.

B. Irregular Surface

For irregular surfaces, we can discuss three situations. The
first one is the surface is flat, but the shape is irregular (e.g.,
a star shape or a cross shape). MM-Tap can still work when
sensors cover a regular quadrangle area because of having a
learnable TDoA pattern. The second one is rough and uneven
surfaces (e.g., hills and valleys), which can be considered
as a 3D surface. However, MM-Tap can only predict the
2D coordinate on the flat surface. There is also a surface
that is formed by multiple splicing plates. TDoA values are
inaccurate in this case and can not provide a good tap sensing
performance. The errors will be higher when the splicing
plates are of different materials.

C. Multiple Points Interaction

Recognizing multiple vibration signals is a typical cocktail-
party problem [46]. We have to separate multiple vibration
signals using the recorded temporal signals of geophone sen-
sors. [48] localizes up to 3 people’s footstep vibration signals
in an indoor environment by assuming that the moments when
different people’s feet hit on the ground are not exactly the
same. Therefore, signals are separable in the time domain with
high sampling frequency. However, vibration signals of the
multi-touch interaction are typically overlapped and hard to be
separated directly. We plan to leverage blind source separation
techniques [46], [47] to recover the original vibration signals
of different sources and support multiple points interaction in
the future.

VII. RELATED WORK

We focus on the related work that senses the direct contact
between fingers and the physical surface. The tap interaction
system can be broadly classified into two classes: instrument-
based and instrument-free.

A. Instrument-based

Instrument-based tap sensing systems require users to wear
special equipment, which is typically a signal source generator.
VersaTouch [1] deploys a vibration microphone on the user’s
fingernail to transmit active signals to nearby piezoelectric
receivers and realize mm-level finger tracking within a circular
area of 40cm diameter. Acustico [3] specializes a wrist-worn
device with four acoustic sensors to detect and localize finger
taps across different surfaces. However, it requires a 1 MHz
sampling rate for accurate TDoA estimation, and its interaction
is limited since the user’s hand cannot move around. ElectroR-
ing [4] presents a wearable ring with electrodes and an IMU
sensor. It can detect subtle finger pinch and track the finger
touch on conductive surfaces. ItrackU [5] designs a surface
tracking system with the fusion of ultra-wide band (UWB),
inertial measurement unit (IMU), and pressure sensor on a
pen, achieving a 90th percentile error of 7 mm in an area of
2.5 m × 2m. Instrument-based systems do provide a better
interaction experience in terms of detection and localization
accuracy, but the extra device may sometimes be cumbersome
to the users, and the power supply is another critical issue for
such systems. In contrast, MM-Tap supports instant interaction
without wearing any extra devices.

B. Instrument-free

Instrument-free systems attempt to enable sensing by modi-
fying the surface itself [7]–[9], crafting an interface similar
to traditional capacitive touchscreens. In addition, vision-
based techniques [10]–[13] are also widely adopted to detect
finger touch on surfaces. Another trend is to deploy ambient
sensors around the sensing area and analyze the readings
when users are interacting on the surface. UbiK [14] utilizes
dual microphones on a mobile device to capture the acoustic
signal of finger taps. It further extracts location-dependent
features from the signals to train a classification model and
realize a virtual keyboard on ubiquitous surfaces. VibSense
[15] deploys a single piezoelectric sensor to receive the surface
vibration of a finger tap and applies SVM to determine the
keystroke location. VSkin [18] supports fine-grained 1D finger
tracking and tapping recognition on the back surface of a
mobile phone by analyzing the amplitude and phase of sound
signals. PACE [53] deploys a 6-mic array to collect structure-
borne and air-borne footstep impact sounds (FIS) for small-
scale indoor scenarios, demonstrating a sub-meter localization
accuracy with a median error of 30 cm. Ubitap [17] exploits
the dispersion phenomenon and collects both surface-borne
and air-borne acoustic signals of finger taps with accelerometer
and microphone sensors, respectively. The system uses three
standalone smartphones to cover an area of 24cm× 36cm and
can perform accurate TDoA triangulation of finger taps on
different surfaces. Acoustic-based systems have high accuracy,
but it is hard to scale up the sensing range. In contrast, MM-
Tap supports a much larger sensing range up to 80 cm ×
80 cm with similar performance. The most relevant work to
us is SurfaceVibe [16], which deploys four geophone sensors
to conduct TDoA triangulation and estimate the finger tap
location and swipe trajectory with cm-level accuracy. On the
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other hand, MM-Tap adopts a new localization scheme that can
realize mm-level tap sensing with fewer geophone sensors. In
addition, users no longer need to measure the exact coordinate
of ambient sensors when deploying MM-Tap.

VIII. CONCLUSION

In this paper, we propose MM-Tap push the limits of
vibration-based tap sensing on ubiquitous surfaces with mm-
level accuracy. MM-Tap can transform a normal flat surface
into a scalable virtual interface in a low-cost manner. MM-
Tap builds upon a novel localization scheme that constructs a
mapping relationship between TDoA values and tap locations.
We exploit the geometry of the sensor layout and propose
a novel synthetic data generator and an effortless calibration
scheme. Our comprehensive experiments validate that MM-
Tap can adapt to varying surface material and scale to arbitrary
sensing area size after calibration within a few seconds.
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